Advertisement Remove all ads

Change the Order of Integration and Evaluate ∫ 2 0 ∫ 2 √ 2 Y X 2 √ X 4 − 4 Y 2 D X D Y - Applied Mathematics 2

Sum

Change the order of Integration and evaluate `int_0^2int_sqrt(2y)^2 x^2/(sqrtx^4-4y^2)dxdy`

Advertisement Remove all ads

Solution

Let I = `int_0^2int_sqrt(2y)^2 x^2/(sqrtx^4-4y^2)dxdy`
Region of integration : `sqrt(2y)<=x<=2`

`0<=y<=2`

Curves : (i) x = 2 , y = 2 , y = 0 are lines.
(ii) `x=sqrt(2y)=>x^2=2y`

Parabola with vertex (0,0) opening in upward direction.

After changing the order of integration:

`0<=y<=x^2/2`

`0<=x<=2`

`therefore "I"=int_0^2int_0^(x^2/2)x^2/sqrt(x^4-4y^2)dydx`

`=1/2int_0^2int_0^(x^2/2)x^2/sqrt(x^4/4-y^2)dydx`

`=1/2int_0^2x^2[sin^(-1)(y/(x^2/2))]_0^(x^2/2)dy`

`therefore  "I"=1/2int_0^2x^2pi/2dx`

`=pi/4[x^3/3]_0^2`

`therefore "I"=(2x)/3`

Concept: Change the Order of Integration
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×