###### Advertisements

###### Advertisements

Can an electromagnetic wave be deflected by an electric field or a magnetic field?

###### Advertisements

#### Solution

No, an electromagnetic wave cannot be deflected by an electric field or a magnetic field. This is because according to Maxwell's theory, an electromagnetic wave does not interact with the static electric field and magnetic field. Even if we consider the particle nature of the wave, the photon is electrically neutral. So, it is not affected by the static magnetic and electric fields.

#### APPEARS IN

#### RELATED QUESTIONS

Suppose that the electric field part of an electromagnetic wave in vacuum is

`vec"E" = {(3.1"N"/"C") cos[(1.8 ("rad")/"m")"y" + (5.4 xx 10^8 ("rad")/"s")"t"]}hat"i"`

**(a) **What is the direction of propagation?

**(b) **What is the wavelength λ?

**(c) **What is the frequency v?

**(d) **What is the amplitude of the magnetic field part of the wave?

**(e) **Write an expression for the magnetic field part of the wave.

In the study of a photoelectric effect the graph between the stopping potential V and frequency *v* of the incident radiation on two different metals P and Q is shown below:

(i) Which one of the two metals has higher threshold frequency?

(ii) Determine the work function of the metal which has greater value.

(iii) Find the maximum kinetic energy of electron emitted by light of frequency 8 × 10^{14} Hz for this metal.

Do electromagnetic waves carry energy and momentum ?

What is the ratio of the speed of gamma rays to that of radio waves in a vacuum?

How are electric vector `(vec "E")`, magnetic vector `(vec "B")` and velocity vector `(vec "C")` oriented in an electromagnetic wave?

Which mode of propagation is used by short wave broadcast serves?

Arrange the following electromagnetic waves in decreasing order of wavelength:

How does a charge q oscillating at certain frequency produce electromagnetic waves?

Sketch a schematic diagram depicting electric and magnetic fields for an electromagnetic wave propagating along the Z-direction.

A wire carries an alternating current i = i_{0} sin ωt. Is there an electric field in the vicinity of the wire?

A capacitor is connected to an alternating-current source. Is there a magnetic field between the plates?

A plane electromagnetic wave is passing through a region. Consider (a) electric field (b) magnetic field (c) electrical energy in a small volume and (d) magnetic energy in a small volume. Construct the pairs of the quantities that oscillate with equal frequencies.

An electromagnetic wave going through vacuum is described by

E = E_{0} sin (kx − ωt); B = B_{0} sin (kx − ωt).

Which of the following equations is true?

Displacement current goes through the gap between the plates of a capacitor when the charge of the capacitor

(a) increases

(b) decreases

(c) does not change

(d) is zero

Speed of electromagnetic waves is the same

The energy contained in a small volume through which an electromagnetic wave is passing oscillates with

Consider the situation of the previous problem. Define displacement resistance R_{d} = V/i_{d}of the space between the plates, where V is the potential difference between the plates and i_{d} is the displacement current. Show that R_{d} varies with time as `R_d = R(e^(t"/"tau) - 1)` .

A laser beam has intensity 2.5 × 10^{14} W m^{−2}. Find amplitudes of electric and magnetic fields in the beam.

The energy associated with light of which of the following colours is minimum :

This is an example of step-up transformer .

Define frequency modulation and state any one advantage of frequency modulation (FM) over amplitude modulation (AM).

State any one property which is common to all electromagnetic waves.

The energy levels of an atom of a certain element are shown in the given figure. Which one of the transitions A, B, C, D or E will result in the emission of photons of electromagnetic radiation of wavelength 618.75 nm? Support your answer with mathematical calculations.

How are electromagnetic waves produced? What is the source of the energy carried by a propagating electromagnetic wave?

Identify the electromagnetic radiations used**(i)** In remote switches of a household electronic device; and**(ii)** as a diagnostic tool in medicine

Consider an oscillator which has a charged particle oscillating about its mean position with a frequency of 300 MHz. The wavelength of electromagnetic waves produced by this oscillator is ______.

Fraunhofer lines are an example of _______ spectrum.

What are electromagnetic waves?

Write notes on Ampere-Maxwell law.

Why are e.m. waves non-mechanical?

Write down Maxwell equations in integral form.

Write a short note on the microwave.

Write a short note on the X-ray.

Explain the importance of Maxwell’s correction.

Write down the properties of electromagnetic waves.

A man standing on the road has to hold his umbrella at 30° with the vertical to keep the rain away. He throws away the umbrella and starts, running at 10 km/h and finds raindrops hitting his head vertically. The speed of the raindrops with respect to the road is ______.

In space communication, the sound waves can be sent from one place to another

A plane electromagnetic wave travels in free space along x-axis. At a particular point in space, the electric field along y-axis is 9.3 Vm^{−1}. The magnetic induction (B) along z-axis is:

Dimensions of 1/(µOE_{0}) is

Which of the following electromagnetic radiations has the smallest wave length?

An accelerate electron would produce.

Maxwell's equation describe the fundamental law of

If a source is transmitting electromagnetic waves of frequency 8.2 × 10^{6} Hz. then wavelength of electromagnetic waves transmitted from the source will be.

Which of the following are not electromagnetic waves?

For which frequency of light, the eye is most sensitive?

Electromagnetic waves are produced by ______.

Which of the following type of radiations are radiated by an oscillating electric charge?

For a plane electromagnetic wave propagating in x-direction, which one of the following combinations gives the correct possible directions for electric field (E) and magnetic field (B) respectively?

For a plane electromagnetic wave propagating in the x-direction, which one of the following combinations gives the correct possible directions for the electric field (E) and magnetic field (B) respectively?

Poynting vectors S is defined as a vector whose magnitude is equal to the wave intensity and whose direction is along the direction of wave propagation. Mathematically, it is given by `S = 1/mu_0 E xx B`. Show the nature of S vs t graph.

Professor C.V Raman surprised his students by suspending freely a tiny light ball in a transparent vacuum chamber by shining a laser beam on it. Which property of EM waves was he exhibiting? Give one more example of this property.

The intensity of the light from a bulb incident on a surface is 0.22 W/m^{2} . The amplitude of the magnetic field in this light-wave is ______× 10^{–9 }T.

(**Given: **Permittivity of vacuum ε_{0} = 8.85 × 10^{–12} C^{2 }N^{–1} – m^{–2}, speed of light in vacuum c = 3 × 10^{8} ms^{-1})

A plane electromagnetic wave of frequency 500 MHz is travelling in a vacuum along a y-direction.

At a particular point in space and time, `vec"B"` = 8.0 × 10^{-8} `hat"Z"`T. The value of the electric field at this point is ______.

(speed of light = 3 × 10^{8} ms^{-1})

`hat x, hat y, hat z` are unit vectors along x, y, and Z directions.

For an electromagnetic wave travelling in free space, the relation between average energy densities due to electric (U_{e}) and magnetic (U_{m}) fields is ______.

A plane electromagnetic wave, has frequency of 2.0 × 10^{10} Hz and its energy density is 1.02 × 10^{-8} J/m^{3} in vacuum. The amplitude of the magnetic field of the wave is close to `(1/(4piepsilon_0) = 9xx10^9"Nm"^2/"C"^2 "and speed of light" = 3 xx 10^8 "m" "s"^-1)`:

The electric field in a plane electromagnetic wave is given by `vecE = 200cos[((0.5 xx 10^3)/m)x - (1.5 xx 10^11 "rad"/s xx t)]V/mhatj`. If the wave falls normally on a perfectly reflecting surface having an area of 100 cm^{2}. If the radiation pressure exerted by the E.M. wave on the surface during a 10-minute exposure is `x/10^9 N/m^2`. Find the value of x.

Sunlight falls normally on a surface of area 36 cm^{2} and exerts an average force of 7.2 × 10^{-9} N within a time period of 20 minutes. Considering a case of complete absorption the energy flux of incident light is ______.

A plane electromagnetic wave with frequency of 30 MHz travels in free space. At particular point in space and time, electric field is 6 V/m. The magnetic field at this point will be x × 10^{-8 }T. The value of x is ______.

An electromagnetic wave of frequency 3 GHz enters a dielectric medium of relative electric permittivity 2.25 from vacuum. The wavelength of this wave in that medium will be ______ × 10^{-2} cm.

In a plane electromagnetic wave, the direction of electric field and magnetic field are represented by `hat"k"` and 2`hat"i" - 2hat"j"`, respectively. What is the unit vector along direction of propagation of the wave.

An electromagnetic wave of frequency v = 3.0 MHz passes from vacuum into a dielectric medium with permittivity ∈ = 4.0. Then ______.

An electromagnetic wave is produced by a charge ______.

Name the electromagnetic wave/radiation which is used to study crystal structure.