Advertisement Remove all ads

Calculate the Velocity of the Centre of Mass of the System of Particles Shown in Figure. - Physics

Sum

Calculate the velocity of the centre of mass of the system of particles shown in figure.

Advertisement Remove all ads

Solution

From the figure, the velocities of different masses can be written as:

\[\text{For m}_1 = 1 . 0 \text{kg}, \]

\[\text{ Velocity, } \vec{v}_1 = \left( - 1 . 5 \cos 37^\circ \hat i - 1.5 \sin 37^\circ\hat j\right) = - 1 . 2 \hat i- 0.9 \hat j\]
\[\text{For m}_2 = 1 . 2 \text{kg}, \]

\[\text{Velocity}, \vec{v}_2 = 0 . 4 \vec{j} \]

\[\text{For m}_3 = 1 . 5 \text{kg,} \]

\[\text{Velocity,} \vec{v}_3 = - 1 . 0 \cos 37^\circ \hat i0 + 1.0 \sin 37^\circ\hat j \]

\[\text{ For m}_4 = 0 . 50 \text{kg}, \]

\[\text{ Velocity,} \vec{v}_4 = 3 . 0 \hat i \]

\[\text{ For m}_5 = 1 . 0 \text{ kg}, \]

\[\text{ Velocity }, \vec{v}_5 = 2 . 0 \cos 37^\circ \hat i - 2 . 0 \sin 37^\circ \hat j \]

\[(\cos 37^\circ = \frac{4}{5} \text{ and } \sin 37^\circ \ = \frac{3}{5})\]

\[ V_{cm} = \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2 + m_3 \vec{v}_3 + m_4 \vec{v}_4 + m_5 \vec{v}_5}{m_1 + m_2 + m_3 + m_4 + m_5}\]

\[ = \frac{1}{1 . 0 + 1 . 2 + 1 . 5 + 1 . 0 + 0 . 50}^\left[ 1 . 0\left( - 1 . 5 \times \frac{4}{5} \vec{i} - 1 . 5 \times \frac{3}{5} \vec{j} \right) + . . . - 2 . 0 \times \frac{3}{5} \vec{j} \right] \]

On solving the above equation, we get:
Vcm is 0.20 m/s , at 45° below the direction, towards right. 

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

HC Verma Class 11, 12 Concepts of Physics 1
Chapter 9 Centre of Mass, Linear Momentum, Collision
Q 7 | Page 160
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×