Calculate the Sensitivity of the Moving Coil Galvanometer - Physics

Advertisements
Advertisements

A rectangular coil of a moving coil galvanometer contains 50 turns each having area 12 cm2 . It is suspended in radial magnetic field 0.025 Wb/m2 by a fibre of twist constant 15 x10-10 Nm/degree. Calculate the sensitivity of the moving coil galvanometer.

Advertisements

Solution

Given:-

N = 50, A = 12 cm2 = 12 x 10-4 m2,

B = 0.025 Wb/m2,

C = 15 x 10-10 Nm/degree

To find:- Sensitivity (Si)

Formula: Si = NAB/C

Calculation: From formula,

`S_i=(50xx12xx10^-4xx0.025)/(15xx10^-10`

`thereforeS_i=10^6"div/A"`

The sensitivity of a moving coil galvanometer is 106 div/A.

  Is there an error in this question or solution?
2014-2015 (October)

APPEARS IN

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

The combined resistance of a galvanometer of resistance 500Ω and its shunt is 21Ω. Calculate the value of shunt.


The combined resistance of a galvanometer of resistance 500Ω and its shunt is 21Ω. Calculate the value of shunt.


Show that the current flowing through a moving coil galvanometer is directly proportional to the angle of deflection of coil.


Write the underlying principle of a moving coil galvanometer.


Obtain the expression for current sensitivity of moving coil galvanometer.


A circular coil of 250 turns and diameter 18 cm carries a current of 12A. What is the magnitude of magnetic moment associated with the coil?


An ideal voltmeter has _______.

(A) low resistance

(b) high resistance

(C) infinite resistance

(D) zero resistance


Explain how moving coil galvanometer is converted into a voltmeter. Derive the necessary formula.


A rectangular coil of a moving coil galvanometer contains 100 turns, each having area
15 cm2. It is suspended in the radial magnetic field 0.03 T. The twist constant of suspension
fibre is 15 x 10-10 N-m/degree. Calculate the sensitivity of the moving coil galvanometer.


The fraction of the total current passing through the galvanometer is ............ .

a) `S/(S+G)`

b) `G/(S+G)`

c) `(S+G)/G`

d) `(S+G)/S`


A moving coil galvanometer has a resistance of 25Ω and gives a full scale deflection for a current of 10mA. How will you convert it into a voltmeter having range 0 - 100 V?


A galvanometer has a resistance of 16Ω. It shows full scale deflection, when a current of 20 mA is passed through it. The only shunt resistance available is 0.06  which is not appropriate to convert a galvanometer into an ammeter. How much resistance should be connected in series with the coil of galvanometer, so that the range of ammeter is 8 A?


Why is it necessary to introduce a radial magnetic field inside the coil of a galvanometer?


Can a galvanometer as such be used for measuring the current? Explain.


How will you convert a moving coil galvanometer into a voltmeter?


Outline the necessary steps to convert a galvanometer of resistance RG into an ammeter of a given range ?


State the underlying principle of working of a moving coil galvanometer. Write two reasons why a galvanometer can not be used as such to measure current in a given circuit. Name any two factors on which the current sensitivity of a galvanometer depends.


What are the advantages of using soft iron as a core, instead of steel, in the coils of galvanometers?


A coil of radius 10 cm and resistance 40 Ω has 1000 turns. It is placed with its plane vertical and its axis parallel to the magnetic meridian. The coil is connected to a galvanometer and is rotated about the vertical diameter through an angle of 180°. Find the charge which flows through the galvanometer if the horizontal component of the earth's magnetic field is BH = 3.0 × 10−5 T.


Why are the pole pieces of a horseshoe magnet in a moving coil galvanometer made cylinder in shape? 


A moving coil galvanometer has a coil of resistance 59 Ω. It shows a full-scale deflection for a current of 50 mA. How will you convert it to an ammeter having a range of 0 to 3A?


State how a moving coil galvanometer can be converted into an ammeter.


A galvanometer coil has a resistance of 12 Ω and the metre shows full scale deflection for a current of 3 mA. How will you convert the metre into a voltmeter of range 0 to 18 V?


A moving coil galvanometer has N number of turns in a coil of effective area A, it carries a current I. The magnetic field B is radial. The torque acting on the coil is ______.

The current sensitivity of a galvanometer increase by 20%. If its resistance also increases by 25%, the voltage sensitivity will ______.


A galvanometer of resistance 100 Ω gives a full-scale deflection for a current of 10−5 A. To convert it into an ammeter capable of measuring up to 1 A we should connect a resistance of ______.


A galvanometer having a coil resistance of 60 Ω shows full-scale deflection when a current of 1.0 amp passes through it. It can be converted into an ammeter to read currents up to 5.0 amp by:


In an ammeter 0.5% of main current passes through galvanometer; If resistance of galvanometer is G, the resistance of ammeter will be.


The coil of galvanometer consists of 100 turns and effective area of 1 square cm. The restoring couple is 10-8 N-m/rad. The magnetic field between the pole pieces is 5T. The current sensitivity of this galvanometer will be ______.


A voltmeter of variable ranges 3 V, 15 V, 150 V is to be designed by connecting resistances R1, R2, R3 in series with a galvanometer of resistance G = 20 Ω, as shown in Fig. The galvanometer gives full pass through its coil for 1 mA current i.e. "gives full pass through it's coil for 1 mA current". Then, the resistances R1, R2 and R3 (in kilo ohms) should be, respectively:


When a galvanometer is shunted with a 4 Ω resistance, the deflection is reduced to one-fifth. If the galvanometer is further shunted with a 2 Ω wire. The further reduction (find the ratio of decrease in current to the previous current) in the deflection will be (the main current remains the same)


A galvanometer coil bas 500 turns and each tum has an average area of 3 × 10-4 m2. If a torque of 1.5 Nm is required to keep this coil parallel to a magnetic field when a current of 0.5 A is flowing through it, the strength of the field (in T) is ______.


A galvanometer having a resistance of 20 Ω and 30 Ω division on both sides has figure of merit 0.005 ampere/division. The resistance that should be connected in series such that it can be used as a voltmeter upto 15 volt, is ______.


A moving coil galvanometer has 150 equal divisions. Its current sensitivity is 10-divisions per milliampere and voltage sensitivity is 2 divisions per millivolt. In order that each division reads 1 volt, the resistance in ohms needed to be connected in series with the coil will be ______.


How is current sensitivity increased?


Explain in brief the basic construction of a moving-coil table galvanometer whit a neat labelled diagram.


A resistance of 3Ω is connected in parallel to a galvanometer of resistance 297Ω. Find the fraction of current passing through the galvanometer.


A voltmeter has a range of 0 - 20 V and a resistance of 500 Q. Explain how can be used to measure voltages from 0 - 200 volt?


A moving coil galvanometer of resistance 55 Ω produces a full scale deflection for a current of 250 mA. How will you convert it into an ammeter with a range of 0 - 3A?


To convert a moving coil galvanometer into an ammeter we need to connect a ______.


Share
Notifications



      Forgot password?
Use app×