Share

# Calculate N(T)/N(1000 K) for Tungsten Emitter at T = 300 K, 2000 K and 3000 K, Where N(T) Represents the Number of Thermions Emitted per Second by the Surface at Temperature T. - Physics

ConceptDavisson-Germer Experiment

#### Question

Calculate n(T)/n(1000 K) for tungsten emitter at T = 300 K, 2000 K and 3000 K, where n(T) represents the number of thermions emitted per second by the surface at temperature T. Work function of tungsten is 4.52 eV.

#### Solution

According to Richardson-Dushman equation, the number of thermions (n) emitted by a surface, in a given time (t), is given by

i= n e =AST^2e^(-phi"/"kT)

A'=A/e

rArr n = A'ST^2e^(-phi"/"kT)

Here,

$\phi = 4 . 52\text{ }e . V = 4 . 52 \times (1 . 6 \times {10}^{- 19} ) J$

$k = 1 . 38 \times {10}^{- 23} J/K$

$n(1000) = A'S \times (1000 )^2 \times e^{( - 4 . 52 \times 1 . 6 \times {10}^{- 19} )/(1 . 38 \times {10}^{- 23} \times 1000)}$

$n(1000) = A'S \times {10}^6 \times 1 . 7396 \times {10}^{- 23}$

$n(1000) = A'S \times 1 . 7396 \times {10}^{- 17}$

$\frac{n(300K)}{n(1000K)} = \frac{A'S \times (300 )^2 \times e^{( - 4 . 52 \times 1 . 6 \times {10}^{- 19} )/(1 . 38 \times {10}^{- 23} \times 300)}}{A'S \times 1 . 7396 \times {10}^{- 17}}$

$\frac{n(300K)}{n(1000K)} = \frac{9 \times {10}^4 \times 1 . 364 \times {10}^{- 76}}{1 . 7396 \times {10}^{- 17}}$

$\frac{n(300K)}{n(1000K)} = 7 . 056 \times {10}^{- 55}$

$\frac{n(2000K)}{n(1000K)} = \frac{A'S \times (2000 )^2 \times e^{( - 4 . 52 \times 1 . 6 \times {10}^{- 19} )/(1 . 38 \times {10}^{- 23} \times 2000)}}{A'S \times 1 . 7396 \times {10}^{- 17}}$

$\frac{n(2000K)}{n(1000K)} = \frac{4 \times {10}^6 \times (4 . 1712 \times {10}^{- 12} )}{(1 . 7396 \times {10}^{- 17} )}$

$\frac{n(2000K)}{n(1000K)} = 9 . 73 \times {10}^{11}$

$\frac{n(3000K)}{n(1000K)} = \frac{A'S \times (3000 )^2 \times e^{( - 4 . 52 \times 1 . 6 \times {10}^{- 19} )/(1 . 38 \times {10}^{- 23} \times 3000)}}{A'S \times 1 . 7396 \times {10}^{- 17}}$

$\frac{n(3000K)}{n(1000K)} = \frac{(9 \times {10}^6 ) \times (2 . 5913 \times {10}^{- 8} )}{(1 . 7396 \times {10}^{- 17} )}$

$\frac{n(3000K)}{n(1000K)} = 1 . 34 \times {10}^{16}$

Is there an error in this question or solution?

#### Video TutorialsVIEW ALL [2]

Solution Calculate N(T)/N(1000 K) for Tungsten Emitter at T = 300 K, 2000 K and 3000 K, Where N(T) Represents the Number of Thermions Emitted per Second by the Surface at Temperature T. Concept: Davisson-Germer Experiment.
S