Advertisements
Advertisements
|b_{xy} + b_{yx}| ≥ ______
Advertisements
Solution
2|r|
APPEARS IN
RELATED QUESTIONS
For bivariate data. `bar x = 53, bar y = 28, "b"_"YX" = - 1.2, "b"_"XY" = - 0.3` Find estimate of Y for X = 50.
From the data of 7 pairs of observations on X and Y, following results are obtained.
∑(x_{i} - 70) = - 35, ∑(y_{i} - 60) = - 7,
∑(x_{i} - 70)^{2} = 2989, ∑(y_{i} - 60)^{2} = 476,
∑(x_{i} - 70)(y_{i} - 60) = 1064
[Given: `sqrt0.7884` = 0.8879]
Obtain
- The line of regression of Y on X.
- The line regression of X on Y.
- The correlation coefficient between X and Y.
Bring out the inconsistency in the following:
b_{YX} = b_{XY} = 1.50 and r = - 0.9
Two samples from bivariate populations have 15 observations each. The sample means of X and Y are 25 and 18 respectively. The corresponding sum of squares of deviations from respective means is 136 and 150. The sum of the product of deviations from respective means is 123. Obtain the equation of the line of regression of X on Y.
The two regression equations are 5x − 6y + 90 = 0 and 15x − 8y − 130 = 0. Find `bar x, bar y`, r.
Regression equations of two series are 2x − y − 15 = 0 and 3x − 4y + 25 = 0. Find `bar x, bar y` and regression coefficients. Also find coefficients of correlation. [Given `sqrt0.375` = 0.61]
The equations of two regression lines are 10x − 4y = 80 and 10y − 9x = − 40 Find:
- `bar x and bar y`
- `"b"_"YX" and "b"_"XY"`
- If var (Y) = 36, obtain var (X)
- r
Choose the correct alternative:
If for a bivariate data, b_{YX} = – 1.2 and b_{XY} = – 0.3, then r = ______
Choose the correct alternative:
|b_{yx} + b_{xy}| ≥ ______
Choose the correct alternative:
b_{xy} and b_{yx} are ______
Choose the correct alternative:
If r = 0.5, σ_{x} = 3, σ_{y}^{2} = 16, then b_{xy} = ______
Corr(x, x) = 1
If the sign of the correlation coefficient is negative, then the sign of the slope of the respective regression line is ______
The value of product moment correlation coefficient between x and x is ______
b_{yx} is the ______ of regression line of y on x
The equations of two lines of regression are 3x + 2y – 26 = 0 and 6x + y – 31 = 0. Find variance of x if variance of y is 36
If n = 5, Σx = Σy = 20, Σx^{2} = Σy^{2} = 90 , Σxy = 76 Find Covariance (x,y)
For a certain bivariate data of a group of 10 students, the following information gives the internal marks obtained in English (X) and Hindi (Y):
X | Y | |
Mean | 13 | 17 |
Standard Deviation | 3 | 2 |
If r = 0.6, Estimate x when y = 16 and y when x = 10
x | y | `x - barx` | `y - bary` | `(x - barx)(y - bary)` | `(x - barx)^2` | `(y - bary)^2` |
1 | 5 | – 2 | – 4 | 8 | 4 | 16 |
2 | 7 | – 1 | – 2 | `square` | 1 | 4 |
3 | 9 | 0 | 0 | 0 | 0 | 0 |
4 | 11 | 1 | 2 | 2 | 4 | 4 |
5 | 13 | 2 | 4 | 8 | 1 | 16 |
Total = 15 | Total = 45 | Total = 0 | Total = 0 | Total = `square` | Total = 10 | Total = 40 |
Mean of x = `barx = square`
Mean of y = `bary = square`
b_{xy} = `square/square`
b_{yx} = `square/square`
Regression equation of x on y is `(x - barx) = "b"_(xy) (y - bary)`
∴ Regression equation x on y is `square`
Regression equation of y on x is `(y - bary) = "b"_(yx) (x - barx)`
∴ Regression equation of y on x is `square`
Mean of x = 53
Mean of y = 28
Regression coefficient of y on x = – 1.2
Regression coefficient of x on y = – 0.3
a. r = `square`
b. When x = 50,
`y - square = square (50 - square)`
∴ y = `square`
c. When y = 25,
`x - square = square (25 - square)`
∴ x = `square`
The regression equation of y on x is 2x – 5y + 60 = 0
Mean of x = 18
`2 square - 5 bary + 60` = 0
∴ `bary = square`
`sigma_x : sigma_y` = 3 : 2
∴ b_{yx} = `square/square`
∴ b_{yx} = `square/square`
∴ r = `square`
b_{xy} . b_{yx} = ______.
The following results were obtained from records of age (x) and systolic blood pressure (y) of a group of 10 women.
x | y | |
Mean | 53 | 142 |
Variance | 130 | 165 |
`sum(x_i - barx)(y_i - bary)` = 1170
|b_{xy} + b_{yz}| ≥ ______.