#### My Profile

1. Inform you about time table of exam.

2. Inform you about new question papers.

3. New video tutorials information.

#### Question

(i) State Bohr's quantization condition for defining stationary orbits. How does the de Broglie hypothesis explain the stationary orbits?

(ii) Find the relation between three wavelengths λ_{1}, λ_{2} and λ_{3} from the energy-level diagram shown below.

#### Solution

#### Appears in these question papers

#### Similar questions VIEW ALL

An electron is orbiting in 5^{th} Bohr orbit. Calculate ionisation energy for this atom, if the ground state energy is -13.6 eV.

Linear momentum of an electron in Bohr orbit of H-atom (principal quantum number n) is proportional to..................................

- 1/n
^{2} - 1/n
- n
- n
^{2}

Obtain an expression for the radius of Bohr orbit for H-atom.

Calculate the radius of second Bohr orbit in hydrogen atom from the given data.

Mass of electron = 9.1 x 10^{-31}kg

Charge on the electron = 1.6 x 10^{-19} C

Planck’s constant = 6.63 x 10^{-34} J-s.

Permittivity of free space = 8.85 x 10^{-12} C^{2}/Nm^{2}

State Bohr’s third postulate for hydrogen (H2) atom. Derive Bohr’s formula for the wave number. Obtain expressions for longest and shortest wavelength of spectral lines in ultraviolet region for hydrogen atom