CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Show that the Vectors → a = 3 ^ I − 2 ^ J + ^ K , → B = ^ I − 3 ^ J + 5 ^ K , → C = 2 ^ I + ^ J − 4 ^ K Form a Right-angled Triangle. - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Show that the vectors \[\vec{a} = 3 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} - 3 \hat{j} + 5 \hat{k} , \vec{c} = 2 \hat{i} + \hat{j} - 4 \hat{k}\] form a right-angled triangle. 

Solution

\[\text{ LetABCbe the given triangle and }\]
\[ \vec{AC} = \vec{b} = \hat{i} - 3 \hat{j} + 5 \hat{k} \]
\[ \vec{CB} = \vec{a} = 3 \hat{i} - 2 \hat{j} + \hat{k} \]
\[ \vec{AB} = \vec{c} = 2 \hat{i} + \hat{j} - 4 \hat{k} \]
\[ \vec{a} . \vec{b} = 3 + 6 + 5 = 14\]
\[ \vec{b} . \vec{c} = 2 - 3 - 20 = - 21\]
\[ \vec{c} . \vec{a} = 6 - 2 - 4 = 0\]
\[\text{ So }, \vec{AB} \text{ is perpendicular to } \vec{CB} . \]
\[\text{ Thus }, ∆ABC\text{ is a right-angled triangle. }\]

  Is there an error in this question or solution?
Solution Show that the Vectors → a = 3 ^ I − 2 ^ J + ^ K , → B = ^ I − 3 ^ J + 5 ^ K , → C = 2 ^ I + ^ J − 4 ^ K Form a Right-angled Triangle. Concept: Basic Concepts of Vector Algebra.
S
View in app×