CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Show that the Vector ^ I + ^ J + ^ K is Equally Inclined to the Coordinate Axes. - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Show that the vector \[\hat{i} + \hat{j} + \hat{k}\] is equally inclined to the coordinate axes. 

 

Solution

\[\text{ Let } \theta_1 \text{ be the angle between } \vec{a} \text{ and } x - axis.\]

\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 1 \right)^2} = \sqrt{3}\]

\[ \vec{b} = \hat{i} \text{ (Because } \ \hat{i} \text{ is the unit vector along }x-axis)\]

\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1\]

\[ \vec{a} . \vec{b} = 1 + 0 + 0 = 1\]

\[\cos \theta_1 = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{1}{\left( \sqrt{3} \right)\left( 1 \right)} = \frac{1}{\sqrt{3}}\]

\[ \Rightarrow \theta_1 = \cos^{- 1} \left( \frac{1}{\sqrt{3}} \right) . . . \left( 1 \right)\]

\[\]

\[\text{ Let } \theta_2 \text{ be the angle between } \vec{a} \ \text{ and } y - \text{ axis }\]

\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 1 \right)^2} = \sqrt{3}\]

\[ \vec{b} = \hat{j} \ \text { (Because } \hat{j}\ \text{ is the unit vector along }y-\text{ axis) }\]

\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1\]

\[ \vec{a} . \vec{b} = 0 + 1 + 0 = 1\]

\[\cos \theta_2 = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{1}{\left( \sqrt{3} \right)\left( 1 \right)} = \frac{1}{\sqrt{3}}\]

\[ \Rightarrow \theta_2 = \cos^{- 1} \left( \frac{1}{\sqrt{3}} \right) . . . \left( 2 \right)\]

\[\text{ Let } \theta_3 \text{ be the angle between } \vec{a} \text{ and } z - \text{ axis }.\] 

\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 1 \right)^2} = \sqrt{3}\]

\[ \vec{b} = \hat{k}\ { (Because } \ \hat{k}\ \text{ is the unit vector along }z-\text{ axis })\]

\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1\]

\[ \vec{a} . \vec{b} = 0 + 0 + 1 = 1\]

\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{1}{\left( \sqrt{3} \right)\left( 1 \right)} = \frac{1}{\sqrt{3}}\]

\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{1}{\sqrt{3}} \right) . . . \left( 3 \right)\]

\[\text{ From } (1), (2) \text{ and } (3), \text{ the given vector is equally inclined to the coordinate axes }.\] 

  Is there an error in this question or solution?
Solution Show that the Vector ^ I + ^ J + ^ K is Equally Inclined to the Coordinate Axes. Concept: Basic Concepts of Vector Algebra.
S
View in app×