Share

Books Shortlist

Show that the Vector ^ I + ^ J + ^ K is Equally Inclined to the Coordinate Axes. - CBSE (Arts) Class 12 - Mathematics

ConceptBasic Concepts of Vector Algebra

Question

Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to the coordinate axes.

Solution

$\text{ Let } \theta_1 \text{ be the angle between } \vec{a} \text{ and } x - axis.$

$\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 1 \right)^2} = \sqrt{3}$

$\vec{b} = \hat{i} .........................\text{ (Because } \ \hat{i} \text{ is the unit vector along }x-axis)$

$\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1$

$\vec{a} . \vec{b} = 1 + 0 + 0 = 1$

$\cos \theta_1 = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{1}{\left( \sqrt{3} \right)\left( 1 \right)} = \frac{1}{\sqrt{3}}$

$\Rightarrow \theta_1 = \cos^{- 1} \left( \frac{1}{\sqrt{3}} \right) . . . \left( 1 \right)$



$\text{ Let } \theta_2 \text{ be the angle between } \vec{a} \ \text{ and } y - \text{ axis }$

$\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 1 \right)^2} = \sqrt{3}$

$\vec{b} = \hat{j} ........................... \text { (Because } \hat{j}\ \text{ is the unit vector along }y-\text{ axis) }$

$\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1$

$\vec{a} . \vec{b} = 0 + 1 + 0 = 1$

$\cos \theta_2 = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{1}{\left( \sqrt{3} \right)\left( 1 \right)} = \frac{1}{\sqrt{3}}$

$\Rightarrow \theta_2 = \cos^{- 1} \left( \frac{1}{\sqrt{3}} \right) . . . \left( 2 \right)$

$\text{ Let } \theta_3 \text{ be the angle between } \vec{a} \text{ and } z - \text{ axis }.$

$\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( 1 \right)^2} = \sqrt{3}$

$\vec{b} = \hat{k}.................................. { (Because } \ \hat{k}\ \text{ is the unit vector along }z-\text{ axis })$

$\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1$

$\vec{a} . \vec{b} = 0 + 0 + 1 = 1$

$\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{1}{\left( \sqrt{3} \right)\left( 1 \right)} = \frac{1}{\sqrt{3}}$

$\Rightarrow \theta = \cos^{- 1} \left( \frac{1}{\sqrt{3}} \right) . . . \left( 3 \right)$

$\text{ From } (1), (2) \text{ and } (3), \text{ the given vector is equally inclined to the coordinate axes }.$

Is there an error in this question or solution?

Video TutorialsVIEW ALL [4]

Solution Show that the Vector ^ I + ^ J + ^ K is Equally Inclined to the Coordinate Axes. Concept: Basic Concepts of Vector Algebra.
S