CBSE (Arts) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

If ∣ ∣ → a + → B ∣ ∣ = 60 , ∣ ∣ → a − → B ∣ ∣ = 40 and ∣ ∣ → B ∣ ∣ = 46 , Find | → a | - CBSE (Arts) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

If \[\left| \vec{a} + \vec{b} \right| = 60, \left| \vec{a} - \vec{b} \right| = 40 \text{ and } \left| \vec{b} \right| = 46, \text{ find } \left| \vec{a} \right|\]

Solution

\[\text{ We know that }\]
\[ \left| \vec{a} + \vec{b} \right|^2 + \left| \vec{a} - \vec{b} \right|^2 = 2\left( \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 \right)\]
\[ \Rightarrow {60}^2 + {40}^2 = 2\left( \left| \vec{a} \right|^2 + {46}^2 \right) ..................(\text{ Given })\]
\[ \Rightarrow 3600 + 1600 = 2 \left| \vec{a} \right|^2 + 4232\]
\[ \Rightarrow 968 = 2 \left| \vec{a} \right|^2 \]
\[ \Rightarrow \left| \vec{a} \right|^2 = 484\]
\[ \Rightarrow \left| \vec{a} \right| = 22\]
\[\]

  Is there an error in this question or solution?
Solution If ∣ ∣ → a + → B ∣ ∣ = 60 , ∣ ∣ → a − → B ∣ ∣ = 40 and ∣ ∣ → B ∣ ∣ = 46 , Find | → a | Concept: Basic Concepts of Vector Algebra.
S
View in app×