CBSE (Arts) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

If A, B and C Have Position Vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) Respectively, Show that ∆ Abc is Right-angled at C. - CBSE (Arts) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

If AB and C have position vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) respectively, show that ∆ ABC is right-angled at C

Solution

\[\text{ Given that }\]

\[ \vec{OA} = 0 \hat{i} + \hat{j} + \hat{k} ; \vec{OB} = 3 \hat{i} + \hat{j} + 5 \hat{k} ; \vec{OC} = 0 \hat{i} + 3 \hat{j} + 3 \hat{k} \]

\[ \vec{BC} = \vec{OC} - \vec{OB} = - 3 \hat{i} + 2 \hat{j} - 2 \hat{k} \]

\[ \vec{CA} = \vec{OA} - \vec{OC} = 0 \hat{i} - 2 \hat{j} - 2 \hat{k} \]

\[\text{ Now },\]

\[ \vec{BC} . \vec{CA} = 0 - 4 + 4 = 0\]

\[\text{ So }, \vec{BC} \text{ is perpendicular to } \vec{CA} .\]

\[\text{ So }, ∆ABC\hspace{0.167em}\text{ is right-angled at  C. }\] 

  Is there an error in this question or solution?
Solution If A, B and C Have Position Vectors (0, 1, 1), (3, 1, 5) and (0, 3, 3) Respectively, Show that ∆ Abc is Right-angled at C. Concept: Basic Concepts of Vector Algebra.
S
View in app×