CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

If → a = 2 ^ I − ^ J + ^ K → B = ^ I + ^ J − 2 ^ K → C = ^ I + 3 ^ J − ^ K Find λ Such that → a is Perpendicular to λ → B + → C - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

If \[\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}\]  \[\vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]  \[\vec{c} = \hat{i} + 3 \hat{j} - \hat{k}\] find λ such that \[\vec{a}\] is perpendicular to \[\lambda \vec{b} + \vec{c}\]  

Solution

The given vectors are \[\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}\]  \[\vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]  and  \[\vec{c} = \hat{i} + 3 \hat{j} - \hat{k}\] 

Now,  

\[\lambda \vec{b} + \vec{c} = \lambda\left( \hat{i} + \hat{j} - 2 \hat{k} \right) + \left( \hat{i} + 3 \hat{j} - \hat{k} \right) = \left( \lambda + 1 \right) \hat{i} + \left( \lambda + 3 \right) \hat{j} - \left( 2\lambda + 1 \right) \hat{k}\] It is given that 

\[\vec{a} \perp \left( \lambda \vec{b} + \vec{c} \right)\]

\[ \Rightarrow \vec{a} . \left( \lambda \vec{b} + \vec{c} \right) = 0\]

\[ \Rightarrow \left( 2 \hat{i} - \hat{j} + \hat{k} \right) . \left[ \left( \lambda + 1 \right) \hat{i} + \left( \lambda + 3 \right) \hat{j} - \left( 2\lambda + 1 \right) \hat{k} \right] = 0\]

\[ \Rightarrow 2\left( \lambda + 1 \right) - \left( \lambda + 3 \right) - \left( 2\lambda + 1 \right) = 0\]

\[ \Rightarrow 2\lambda + 2 - \lambda - 3 - 2\lambda - 1 = 0\]

\[ \Rightarrow \lambda = - 2\]

 

  Is there an error in this question or solution?
Solution If → a = 2 ^ I − ^ J + ^ K → B = ^ I + ^ J − 2 ^ K → C = ^ I + 3 ^ J − ^ K Find λ Such that → a is Perpendicular to λ → B + → C Concept: Basic Concepts of Vector Algebra.
S
View in app×