CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for For Any Two Vectors → a and → B Show that ( → a + → B ) ⋅ ( → a − → B ) = 0 ⇔ | → a | = ∣ ∣ → B ∣ ∣ - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

For any two vectors \[\vec{a} \text{ and } \vec{b}\] show that \[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 0 \Leftrightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]

Solution

\[\text{ We have }\]
\[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) = 0\]
\[ \Rightarrow \left| \vec{a} \right|^2 - \left| \vec{b} \right|^2 = 0\]
\[ \Rightarrow \left| \vec{a} \right|^2 = \left| \vec{b} \right|^2 \]
\[ \Rightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]

  Is there an error in this question or solution?
Solution For Any Two Vectors → a and → B Show that ( → a + → B ) ⋅ ( → a − → B ) = 0 ⇔ | → a | = ∣ ∣ → B ∣ ∣ Concept: Basic Concepts of Vector Algebra.
S
View in app×