CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Find the Angles Which the Vector → a = ^ I − ^ J + √ 2 ^ K Makes with the Coordinate Axes. - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Find the angles which the vector \[\vec{a} = \hat{i} -\hat {j} + \sqrt{2} \hat{k}\] makes with the coordinate axes.

Solution

\[\text{Let} \theta_1\text{ be the angle between } \vec{a}\text { and } x - axis.\]

\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( - 1 \right)^2 + \left( \sqrt{2} \right)^2} = \sqrt{4} = 2\]

\[ \vec{b} = \hat{i}\text { (Because } \hat{i} \text{ is the unit vector alongx-axis) }\]

\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1\]

\[ \vec{a} . \vec{b} = 1 + 0 + 0 = 1\]

\[\cos \theta_1 = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{1}{\left( 2 \right)\left( 1 \right)} = \frac{1}{2}\]

\[ \Rightarrow \theta_1 = \cos^{- 1} \left( \frac{1}{2} \right) = \frac{\pi}{3}\]

\[\]

\[\text{ Let } \theta_2 \text{ be the angle between } \vec{a} \text{ and } y - axis.\]

\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( - 1 \right)^2 + \left( \sqrt{2} \right)^2} = \sqrt{4} = 2\]

\[ \vec{b} = \hat{j}\text{  (Because } \hat{j}\text{ is the unit vector alongy-axis) }\]

\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1\]

\[ \vec{a} . \vec{b} = 0 - 1 + 0 = - 1\]

\[\cos \theta_2 = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{- 1}{\left( 2 \right)\left( 1 \right)} = \frac{- 1}{2}\]

\[ \Rightarrow \theta_2 = \cos^{- 1} \left( \frac{- 1}{2} \right) = \frac{2\pi}{3}\]

\[\]

\[\text{ Let } \theta_3\text{ be the angle between } \vec{a} \text{ and } z - axis.\]

\[\left| \vec{a} \right| = \sqrt{\left( 1 \right)^2 + \left( - 1 \right)^2 + \left( \sqrt{2} \right)^2} = \sqrt{4} = 2\]

\[ \vec{b} = \hat{k}\text{ (Because} \hat{k}\text { is the unit vector alongz-axis) }\]

\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2} = \sqrt{1} = 1\]

\[ \vec{a} . \vec{b} = 0 + 0 + \sqrt{2} = \sqrt{2}\]

\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{\sqrt{2}}{\left( 2 \right)\left( 1 \right)} = \frac{1}{\sqrt{2}}\]

\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{1}{\sqrt{2}} \right) = \frac{\pi}{4}\]

  Is there an error in this question or solution?
Solution Find the Angles Which the Vector → a = ^ I − ^ J + √ 2 ^ K Makes with the Coordinate Axes. Concept: Basic Concepts of Vector Algebra.
S
View in app×