CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Find the Angle Between the Vectors \[\Vec{A} = 2 \Hat{I} - 3 \Hat{J} + \Hat{K} \Text{ and } \Vec{B} = \Hat{I} + \Hat{J} - 2 \Hat{K}\] - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Find the angle between the vectors \[\vec{a} = 2 \hat{i} - 3 \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - 2 \hat{k}\]

Solution

\[\text{ Let }\theta \text{ be the angle between } \vec{a} \text{ and } \vec{b} . \]
\[\left| \vec{a} \right| = \sqrt{\left( 2 \right)^2 + \left( - 3 \right)^2 + \left( 1 \right)^2} = \sqrt{14}\]
\[\left| \vec{b} \right| = \sqrt{\left( 1 \right)^2 + \left( 1 \right)^2 + \left( - 2 \right)^2} = \sqrt{6}\]
\[ \vec{a} . \vec{b} = 2 - 3 - 2 = - 3\]
\[\cos \theta = \frac{\vec{a} . \vec{b}}{\left| \vec{a} \right| \left| \vec{b} \right|} = \frac{- 3}{\sqrt{14}\sqrt{6}} = \frac{- 3}{\sqrt{84}}\]
\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{- 3}{\sqrt{84}} \right)\]

  Is there an error in this question or solution?
Solution Find the Angle Between the Vectors \[\Vec{A} = 2 \Hat{I} - 3 \Hat{J} + \Hat{K} \Text{ and } \Vec{B} = \Hat{I} + \Hat{J} - 2 \Hat{K}\] Concept: Basic Concepts of Vector Algebra.
S
View in app×