Share

Books Shortlist

# Solution for Dot Product of a Vector with ^ I + ^ J − 3 ^ K , ^ I + 3 ^ J − 2 ^ K and 2 ^ I + ^ J + 4 ^ K Are 0, 5 and 8 Respectively. Find the Vector. - CBSE (Science) Class 12 - Mathematics

ConceptBasic Concepts of Vector Algebra

#### Question

Dot product of a vector with $\hat{i} + \hat{j} - 3\hat{k} , \hat{i} + 3\hat{j} - 2 \hat{k} \text{ and } 2 \hat{i} + \hat{j} + 4 \hat{k}$ are 0, 5 and 8 respectively. Find the vector.

#### Solution

$\text{Leta} \hat{i} + b\hat{j}+ c \hat{k}\text{ be the required } vector.$
$\text{Given that}$
$\left( a\hat{i} + b \hat{j} + c \hat{k}\right) . \left( \hat{i} + \hat{j} - 3 \hat{k} \right) = 0$
$\Rightarrow a + b - 3c = 0 . . . \left( 1 \right)$
$\left( \hat{ai} + \hat{bj} + \hat{ck}\right) . \left(\hat{i} + 3 \hat{j} - \hat{2k}\right) = 5$
$\Rightarrow a + 3b - 2c = 5 . . . \left( 2 \right)$
$\left( \hat{ai} + b \hat{j} + \hat{ck} \right) . \left( \hat{2i} + \hat{j} + \hat{4k} \right) = 5$
$\Rightarrow 2a + b + 4c = 8 . . . \left( 3 \right)$
$\text{ Solving } (1), (2) \text{ and } (3), \text{ send we get }$
$a = 1, b = 2, c = 1$
$\text{ So },a \hat{i} + \hat{bj} + \hat{ck} = \hat{i} + \hat{2j} + \hat{k}$

Is there an error in this question or solution?

#### Video TutorialsVIEW ALL [4]

Solution Dot Product of a Vector with ^ I + ^ J − 3 ^ K , ^ I + 3 ^ J − 2 ^ K and 2 ^ I + ^ J + 4 ^ K Are 0, 5 and 8 Respectively. Find the Vector. Concept: Basic Concepts of Vector Algebra.
S