As shown in figure, LK = `6sqrt(2)` then
(i) MK = ?
(ii) ML = ?
(iii) MN = ?
Solution
(i) In ∆MLK,
∠MLK = 90° and ∠LKM = 30° ......[Given]
∴ ∠LMK = 60° ......[Remaining angle of a triangle]
∴ ∆MLK is a 30° – 60° – 90° triangle.
∴ LK = `sqrt(3)/2` MK ......[Side opposite to 60°]
∴ `6sqrt(2) = sqrt(3)/2` MK ......[Given]
∴ MK = `6sqrt(2) xx 2/sqrt(3)`
= `(12sqrt(2))/sqrt(3)`
= `(12 xx sqrt(2) xx sqrt(3))/(sqrt(3) xx sqrt(3))` ......[Multiply numerator and denominator by `sqrt(3)`]
= `(12 xx sqrt(2 xx 3))/3`
MK = `4sqrt(6)` units
(ii) In ∆MLK,
∠MLK = 90° ......[Given]
∴ MK2 = ML2 + LK2 ......[Pythagoras theorem]
∴ `(4sqrt(6))^2 = "ML"^2 + (6sqrt(2))^2` ......[From (i) and given]
∴ (16 × 6) = ML2 + (36 × 2)
∴ 96 = ML2 + 72
∴ ML2 = 24
∴ ML = `sqrt(24)` .......[Taking square root of both sides]
∴ ML = `sqrt(4 xx 6)`
∴ ML = `2sqrt(6)` units
(iii) In ∆NKM,
∠NKM = 90° and ∠MNK = 45° ......[Given]
∴ ∠KMN = 45° ......[Remaining angle of a triangle]
∴ ∆NKM is 45° – 45° – 90° triangle.
∴ MK = `1/sqrt(2)` MN ......[Theorem of 45° – 45° – 90° triangle]
∴ `4sqrt(6) = 1/sqrt(2)` MN ......[From (i)]
∴ MN = `4sqrt(6) xx sqrt(2)`
= `4sqrt(6 xx 2)`
= `4sqrt(4 xx 3)`
= `4 xx2 xx sqrt(3)`
∴ MN = `8sqrt(3)` units