CBSE Class 10CBSE
Share
Notifications

View all notifications

If the points P(–3, 9), Q(a, b) and R(4, – 5) are collinear and a + b = 1, find the values of a and b. - CBSE Class 10 - Mathematics

Login
Create free account


      Forgot password?

Question

If the points P(–3, 9), Q(a, b) and R(4, – 5) are collinear and a + b = 1, find the values of a and b.

Solution

The given points are P(–3, 9), Q(a, b) and R(4, –5).

Since the given points are collinear, the area of triangle PQR is 0.

∴1/2[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]=0

Here, x1=−3, y1=9, x2=a, y2=b and x3=4, y3=−5

∴1/2[−3(b+5)+a(−5−9)+4(9−b)]=0

⇒−3b−15−14a+36−4b=0

⇒−7b−14a+21=0

⇒2a+b=3 ...(1)

Given:
a+b=1 ...(2)

Subtracting equation (2) from (1), we get:

a = 2

Putting a = 2 in (2), we get:

b = 1 − 2 = − 1

Thus, the values of a and b are 2 and −1, respectively.

  Is there an error in this question or solution?

APPEARS IN

Video TutorialsVIEW ALL [1]

Solution If the points P(–3, 9), Q(a, b) and R(4, – 5) are collinear and a + b = 1, find the values of a and b. Concept: Area of a Triangle.
S
View in app×