Share

# Determine the Ratio in Which the Line 2x +y – 4 = 0 Divides the Line Segment Joining the Points A(2, – 2) and B(3, 7). - CBSE Class 10 - Mathematics

#### Question

Determine the ratio in which the line 2x + y – 4 = 0 divides the line segment joining the points A(2, – 2) and B(3, 7).

#### Solution

Let the given line divide the line segment joining the points A(2, −2) and B(3, 7) in a ratio : 1

Coordinates of the point of division =  ((3k+2)/(k+1), (7k-2)/(k+1))

This point also lies on 2x + y − 4 = 0

:.2((3k+2)/(k+1))+((7k-2)/(k+1))-1=0

=>(6k+4+7k-2-4k-4)/(k+1)=0

=>9k-2=0

=>k=2/9

Therefore, the ratio in which the line 2x + y − 4 = 0 divides the line segment joining the points A(2, −2) and B(3, 7) is 2:9.

Is there an error in this question or solution?

#### APPEARS IN

NCERT Solution for Mathematics Textbook for Class 10 (2019 to Current)
Chapter 7: Coordinate Geometry
Ex. 7.40 | Q: 1 | Page no. 171

#### Video TutorialsVIEW ALL 

Solution Determine the Ratio in Which the Line 2x +y – 4 = 0 Divides the Line Segment Joining the Points A(2, – 2) and B(3, 7). Concept: Area of a Triangle.
S