Advertisement Remove all ads

Are the four points A(1, -1, 1), B(-1, 1, 1), C(1, 1, 1) and D(2, -3, 4) coplanar? Justify your answer. - Mathematics and Statistics

Sum

Are the four points A(1, -1, 1), B(-1, 1, 1), C(1, 1, 1) and D(2, -3, 4) coplanar? Justify your answer.

Advertisement Remove all ads

Solution

The position vectors `bar"a", bar"b", bar"c", bar"d"` of the points A, B, C, D are

`bar"a" = hat"i" - hat"j" + hat"k"`, `bar"b" = -hat"i" + hat"j" + hat"k",  bar"c" = hat"i" + hat"j" + hat"k",  bar"d" = 2hat"i" - 3hat"j" + 4hat"k"`

∴ `bar"AB" = bar"b" - bar"a"`

`= (- hat"i" + hat"j" + hat"k") - (hat"i" - hat"j" + hat"k")`

`= - 2hat"i" + 2hat"j"`

`bar"AC" = bar"c" - bar"a"`

`= (hat"i" + hat"j" + hat"k") - (hat"i" - hat"j" + hat"k") = 2hat"j"`

and `bar"AD" = bar"d" - bar"a" = (2hat"i" - 3hat"j" + 4hat"k") - (hat"i" - hat"j" + hat"k")`

`= hat"i" - 2hat"j" + 3hat"k"`

If A, B, C, D are coplanar, then there exist scalars x, y such that

`bar"AB" = "x".bar"AC" + "y".bar"AD"`

∴ `- 2hat"i" + 2hat"j" = "x"(2hat"j") + "y"(hat"i" - 2hat"j" + 3hat"k")`

∴ `- 2hat"i" + 2hat"j" = "y"hat"i" + (2"x" - 2"y")hat"j" + "3y"hat"k"`

By equality of vectors,

y = - 2     ....(1)

2x - 2y = 2     .....(2)

3y = 0     ....(3)

From (1), y = - 2

From (3), y = 0

This is not possible.

Hence, the points A, B, C, D are not coplanar.

Concept: Representation of Vector
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×