CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Using Differential, Find the Approximate Value of the ( 17 81 ) 1 4 ? - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Using differential, find the approximate value of the \[\left( \frac{17}{81} \right)^\frac{1}{4}\] ?

Solution

\[\text { Consider the function } y = f\left( x \right) = \left( x \right)^\frac{1}{4} . \]

\[\text { Let }: \]

\[ x = \frac{16}{81} \]

\[ x + ∆ x = \frac{17}{81}\]

\[\text { Then }, \]

\[ ∆ x = \frac{1}{81}\]

\[\text { For } x = \frac{16}{81}, \]

\[ y = \left( \frac{16}{81} \right)^\frac{1}{4} = \frac{2}{3}\]

\[\text { Let }: \]

\[ dx = ∆ x = \frac{1}{81}\]

\[\text { Now }, y = \left( x \right)^\frac{1}{4} \]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{4 \left( x \right)^\frac{3}{4}}\]

\[ \Rightarrow \left( \frac{dy}{dx} \right)_{x = \frac{16}{81}} = \frac{27}{32}\]

\[ \therefore ∆ y = dy = \frac{dy}{dx}dx = \frac{27}{32} \times \frac{1}{81} = \frac{1}{96} = 0 . 01042\]

\[ \Rightarrow ∆ y = 0 . 01042\]

\[ \therefore \left( \frac{17}{81} \right)^\frac{1}{4} = y + ∆ y = 0 . 6771\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [2]

Solution for question: Using Differential, Find the Approximate Value of the ( 17 81 ) 1 4 ? concept: Approximations. For the courses CBSE (Science), CBSE (Commerce), CBSE (Arts), PUC Karnataka Science
S
View in app×