Advertisement Remove all ads

Apply the given elementary transformation of the following matrix. Convert [1-123] into an identity matrix by suitable row transformations. - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Apply the given elementary transformation of the following matrix.

Convert `[(1,-1),(2,3)]` into an identity matrix by suitable row transformations.

Advertisement Remove all ads

Solution

convert `[(1,-1),(2,3)]` into identify matrix by suitable row motion

∴ AA−1 = I

A−1 `[(1,-1),(2,3)]=[(1,0),(0,1)]`

Applying Elementary Row operation.
R1 → R1 + `1/3`R2
A6−1 `[(5/3,0),(2,3)]=[(1,1/3),(0,1)]`
R1 → `3/5` R1
A−1 `[(1,0),(2,3)]=[(3/5,1/5),(0,1)]`
A1 `[(1,0),(0,3)]=[(3/5,1/5),((-6)/5,3/5)]`
R2 → `1/3` R2
A−1 `[(1,0),(0,1)]=[(3/5,1/5),((-2)/5,1/5)]`
So, A−1 `[(3/5,1/5),((-2)/5,1/5)]`
Concept: Elementry Transformations
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×