Advertisement

If Sin θ = 7 25 , Find the Values of Cosθ and Tan​θ - Geometry

Question

If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tan​θ.

Solution

We have, 
\[\sin^2 \theta + \cos^2 \theta = 1\]
\[ \Rightarrow \left( \frac{7}{25} \right)^2 + \cos^2 \theta = 1\]
\[ \Rightarrow \cos^2 \theta = 1 - \frac{49}{625} = \frac{625 - 49}{625} = \frac{576}{625}\]

\[ \Rightarrow \cos\theta = \sqrt{\frac{576}{625}} = \frac{24}{25}\]
Now,
\[\tan\theta = \frac{\sin\theta}{\cos\theta}\]
\[ \Rightarrow \tan\theta = \frac{\frac{7}{25}}{\frac{24}{25}}\]
\[ \Rightarrow \tan\theta = \frac{7}{24}\]
Thus, the values of cosθ and tanθ are \[\frac{24}{25}\] and \[\frac{7}{24}\], respectively.

  Is there an error in this question or solution?
Advertisement

APPEARS IN

Balbharati Mathematics 2 Geometry 10th Standard SSC Maharashtra State Board
Chapter 6 Trigonometry
Practice Set 6.1 | Q 1 | Page 131
Advertisement
If Sin θ = 7 25 , Find the Values of Cosθ and Tan​θ Concept: Application of Trigonometry.
Advertisement
Share
Notifications

View all notifications
Login
Create free account


      Forgot password?
View in app×