CBSE Class 10CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for In a Triangle Abc, Ab = Bc = Ca = 2a and Ad ⊥ Bc. Prove that - CBSE Class 10 - Mathematics

Login
Create free account


      Forgot password?

Question

In a ΔABC, AB = BC = CA = 2a and AD ⊥ BC. Prove that

(i) AD = a`sqrt3`

(ii) Area (ΔABC) = `sqrt3` a2

Solution

(i) In ΔABD and ΔACD

∠ADB = ∠ADC                          [Each 90°]

AB = AC                                  [Given]

AD = AD                                  [Common]

Then, ΔABD ≅ ΔACD                 [By RHS condition]

∴ BD = CD = a                         [By c.p.c.t]

In ΔADB, by Pythagoras theorem

AD2 + BD2 = AB2

⇒ AD2 + (a)2 = (2a)2

⇒ AD2 + a2 = 4a2

⇒ AD2 = 4a2 − a2 = 3a2

⇒ AD = a`sqrt3`

(ii) Area of ΔABC = `1/2xxBCxxAD`

`=1/2xx2axxasqrt3`

`=sqrt3` a2

  Is there an error in this question or solution?

APPEARS IN

Solution for question: In a Triangle Abc, Ab = Bc = Ca = 2a and Ad ⊥ Bc. Prove that concept: Application of Pythagoras Theorem in Acute Angle and Obtuse Angle. For the course CBSE
S
View in app×