Advertisement Remove all ads
Advertisement Remove all ads
Sum
Answer the following:
If sec θ = `sqrt(2)` and `(3pi)/2 < theta < 2pi` then evaluate `(1 + tantheta + "cosec"theta)/(1 + cottheta - "cosec"theta)`
Advertisement Remove all ads
Solution
Given, sec θ = `sqrt(2)`
We know that,
tan2θ = sec2θ – 1
= `(sqrt(2))^2 - 1`
= 2 – 1 = 1
∴ tan θ = ± 1
Since `(3pi)/2 < theta < 2pi`,
θ lies in the 4th quadrant.
∴ tan θ < 0
∴ tan θ = – 1
cot θ = `1/(tan theta)` = – 1
cos θ = `1/sec theta = 1/sqrt(2)`
tan θ = `sintheta/costheta`
∴ sin θ = tan θ cos θ
= `(-1)(1/sqrt(2))`
= `-1/sqrt(2)`
∴ cosec θ = `1/sin theta = -sqrt(2)`
∴ `(1 + tan theta + "cosec" theta)/(1 + cot theta - "cosec" theta)`
= `(1 - 1 - sqrt(2))/(1 - 1 + sqrt(2))`
= `(-sqrt(2))/sqrt(2)`
= – 1
Concept: Signs of Trigonometric Functions in Different Quadrants
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads