Advertisement Remove all ads

An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.

Advertisement Remove all ads

Solution

 

Let X denote the number of heads in the four tosses of the coin.

Then X is a random variable that can take the values 0, 1, 2, 3 or 4.

P(X=0)=Probability of getting no head (TTTT)

`=1/16`

P(X=1)=Probability of getting one head (HTTT, THTT, TTHT, TTTH)             

`=4×1/16=1/4`

P(X=2)=Probability of getting two heads (HHTT, HTHT, HTTH, THHT, THTH, TTHH)             

`=6×1/16=3/8`

P(X=3)=Probability of getting three heads (HHHT, HHTH, HTHH, THHH)             

`=4×1/16=1/4`

P(X=4)=Probability of getting four heads (HHHH)            

`=1/16`

The probability distribution of X is

X 0 1 2 3 4
P(X) 1/16 1/4 3/8 1/4 1/16

 

 

xi pi pixi pixi2
0 1/16 0 0
1 1/4 1/4 1/4
2 3/8 3/4 3/2
3 1/4 3/4 9/4
4 1/16 1/4 1
    pixi=2 pixi2=5

 

Mean, E(X) = pixi=2

Var(X)= pixi2(pixi)2=54=1

Therefore, the mean and variance of the number of heads obtained are 2 and 1, respectively.

 
Concept: Mean of a Random Variable
  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×