# An Amount N (In Moles) of a Monatomic Gas at an Initial Temperature T0 is Enclosed in a Cylindrical Vessel Fitted with a Light Piston. - Physics

Sum

An amount n (in moles) of a monatomic gas at an initial temperature T0 is enclosed in a cylindrical vessel fitted with a light piston. The surrounding air has a temperature Ts (> T0) and the atmospheric pressure is Pα. Heat may be conducted between the surrounding and the gas through the bottom of the cylinder. The bottom has a surface area A, thickness x and thermal conductivity K. Assuming all changes to be slow, find the distance moved by the piston in time t.

#### Solution

In time dt, heat transfer through the bottom of the cylinder is given by
"dQ"/"dt" = "KA(T_s - T_0)"/x
For a monoatomic gas, pressure remains constant.
∴ dQ = nC_pdT

∴ (nC_pdT)/ dt = "KA(T_2 - T_0)"/x
For a monoatomic gas,
C_p = 5/2 R

⇒ "n5RdT"/"2dt" = KA(T_s - T_0)/x

⇒ "5nR"/2 "dT"/dt = (KA(t_s - T_0))/x

⇒ "dT"/(T_s - T_0) = "-2KAdt"/"5nRx"

Integrating both the sides,

(T_s - T_0)_"T_0"^"T" = "-2KAt"/"5nRx"

⇒ In  ((T_s - T) /(T_s - T_0)) = - "-2KAt"/"5nRx"

⇒ T_s - T = (T_s - T_0)e ^("-2KAt"/"5nRx")
⇒ T = T_s - (T_s - T_0) =e ^(-"-2KAt"/"5nRx")
⇒ T - T_0 = (T_s - T_0) - (T_s - T_0)e^(-"2KAt"/"5nRx"
⇒ T- T_0 = (T_s - _0) [l - e^(-"-2KAt"/"5nRx")]
From the gas equation,

(P_(a)Al)/(nR) = T - T_0

∴ (P_(a)Al)/(nR)= (T_s - T_0) [1 - e^(-"-2KAt"/"5nRx")]

⇒ l = (nR)/(P_aA) (T_s - T_0)[ 1 - e^(-"-2KAt"/"5nRx")]

Concept: Thermal Expansion of Solids
Is there an error in this question or solution?

#### APPEARS IN

HC Verma Class 11, Class 12 Concepts of Physics Vol. 2
Chapter 6 Heat Transfer
Q 38 | Page 101