ΔAMT ~ ΔAHE, ΔAMT मध्ये AM = 6.3 सेमी, ∠TAM = 50°, AT = 5.6 सेमी आणि AMAH=75 तर ΔAHE काढा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements
Sum

ΔAMT ~ ΔAHE, ΔAMT मध्ये AM = 6.3 सेमी, ∠TAM = 50°, AT = 5.6 सेमी आणि `"AM"/"AH" = 7/5` तर ΔAHE काढा.

Advertisements

Solution

विश्लेषण:

आकृतीत दाखवल्याप्रमाणे,

समजा, A – H – M व A – E – T.

ΔAMT ~ ΔAHE ......[पक्ष]

∴ ∠TAM ≅ ∠EAH ....[समरूप त्रिकोणांचे संगत कोन]

`"AM"/"AH" = "MT"/"HE" = "AT"/"AE"` .....(i) [समरूप त्रिकोणांच्या संगत बाजू]

परंतु, `"AM"/"AH" = 7/5`  .....(ii) [पक्ष]

∴ `"AM"/"AH" = "MT"/"HE" = "AT"/"AE" = 7/5`  .....[(i) आणि (ii) वरून]

∴ ΔAMT च्या बाजू या ΔAHE च्या संगत बाजूंपेक्षा अधिक लांबीच्या आहेत.

∴ बाजू AH ची लांबी ही बाजू AM च्या लांबीच्या 7 समान भागांपैकी 5 भाग एवढी असेल. त्यामुळे, जर आपण त्यामुळे काढला, तर बिंदू H हा बाजू AM वर असून तो बिंदू A पासून 5 भाग एवढ्या अंतरावर असेल.
आता, बिंदू E हा किरण AT चा छेदनबिंदू असून H बिंदूतून जाणारी रेषा MT ला समांतर आहे.
ΔAHE हा ΔAMT चा इष्ट समरूप त्रिकोण आहे.

रचनेच्या पायऱ्या:

i. दिलेल्या मापाचा ΔAMT काढा. बाजू AM शी लघुकोन करणारा किरण AB काढा.

ii. कंपासमध्ये सोयीस्कर अंतर घेऊन किरण AB वर A1, A2, A3, A4, A5, A6 व A7 हे सात बिंदू असे दाखवा, की AA1 = A1A2 = A2A3 = A3A4 = A4A5 = A5A6 = A6A7.

iii. A7M जोडा. बिंदू A5 मधून A7M ला समांतर रेषा काढा. ही रेषा रेख AM ला बिंदू H मध्ये छेदते.

iv. H बिंदूतून बाजू TM ला समांतर रेषा काढा. ही रेषा व रेख AT यांच्या छेदनबिंदूला E नाव द्या. ΔAHE हा ΔAMT शी समरूप असणारा इष्ट त्रिकोण आहे. 

 

Concept: समरूप त्रिकोणाची रचना
  Is there an error in this question or solution?
Chapter 4: भौमितिक रचना - सरावसंच 4.1 [Page 96]

RELATED QUESTIONS

ΔPQR ~ ΔLTR, ΔPQR मध्ये PQ = 4.2 सेमी, QR = 5.4 सेमी, PR = 4.8 सेमी आणि `"PQ"/"LT"` = `3/4` तर ΔPQR व ΔLTR काढा.


ΔPYQ असा काढा की, PY = 6.3 सेमी, YQ = 7.2 सेमी, PQ = 5.8 सेमी. ΔXYZ हा ΔPYQ शी समरूप त्रिकोण असा काढा की, `"YZ"/"YQ" = 6/5`.


पुढील उपप्रश्नासाठी चार पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक पर्याय निवडून त्यांचे वर्णाक्षर लिहा.

आकृतीमध्ये ΔABC ∼ ΔADE आहे, तर त्यांच्या संगत बाजूचे गुणोत्तर ______ आहे. 


∠PQR हा 115° काढा. त्याचे दोन एकरूप कोनांत विभाजन करा. 


रेख AB = 9.7 सेमी लांबीचा काढा. त्यावर बिंदू P असा घ्या, की AP = 3.5 सेमी, A – P – B. बिंदू P मधून रेख AB ला लंब काढा. 


5 सेमी बाजू असलेला समभुज ΔABC काढा. ΔABC ∼ ΔLMN. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 6:7 असल्यास ΔLMN काढा.


ΔABC ~ ΔPBR, BC = 8 सेमी, AC = 10 सेमी , ∠B = 90°, `"BC"/"BR" = 5/4`, तर ΔPBR काढा.


ΔRST ∼ ΔUAY, ΔRST मध्ये, RS = 6 सेमी, ∠S = 50°, ST = 7.5 सेमी. त्रिकोणाच्या संगत बाजूंचे गुणोत्तर 5.4 असल्यास ΔUAY काढा. 


ΔPQR ∼ ΔSTU, ΔPQR मध्ये PQ = 5.2 सेमी, QR = 3.6 सेमी, PR = 7.2 सेमी, `"PQ"/"ST" = 4/5`, तर ΔPQR व ΔSTU काढा.


ΔSHR ∼ ΔSVU, ΔSHR मध्ये SH = 4.5 सेमी, HR = 5.2 सेमी, SR = 5.8 सेमी, `"HS"/"SV" = 3/5`, तर ΔSVU काढा.


Share
Notifications



      Forgot password?
Use app×