Among the second period elements the actual ionization enthalpies are in the
order Li < B < Be < C < O < N < F < Ne.
Explain why Be has higher ΔiH than B?
Solution 1
During the process of ionization, the electron to be removed from beryllium atom is a 2s-electron, whereas the electron to be removed from boron atom is a 2p-electron. Now, 2s-electrons are more strongly attached to the nucleus than 2p-electrons. Therefore, more energy is required to remove a 2s-electron of beryllium than that required to remove a 2p-electron of boron. Hence, beryllium has higher ΔiH than boron.
Solution 2
In case of Be (1s2 2s2) the outermost electron is present in 2s-orbital while in B (1s2 2s2 2p1) it is present in 2p-orbital. Since 2s – electrons are more strongly attracted by the nucleus than 2p-electrons, therefore, lesser amount of energy is required to knock out a 2p-electron than a 2s – electron. Consequently, At of Be is higher than that ∆iH1 of B