Δ ABC व Δ DEF हे दोन्ही समभुज त्रिकोण आहेत. A (ΔABC) : A (Δ DEF) = 1 : 2 असून AB = 4 तर DE ची लांबी काढा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements
Sum

Δ ABC व Δ DEF हे दोन्ही समभुज त्रिकोण आहेत. A (ΔABC) : A (Δ DEF) = 1 : 2 असून AB = 4 तर DE ची लांबी काढा.

Advertisements

Solution

ΔABC व ΔDEF मध्ये,

∠A ≅ ∠D ............[प्रत्येक कोनाचे माप 60°]
∠B ≅ ∠E

∴ ΔABC ∼ ΔDEF ...........[समरूपतेची कोको कसोटी]

∴ `("A"(Δ"ABC"))/("A"(Δ"DEF")) = "AB"^2/"DE"^2` .......[समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय] 

∴ `1/2 = 4^2/"DE"^2`

∴ `"DE"^2 = 4^2 xx 2`

∴ DE = `4sqrt(2)` एकक ..........[दोन्ही बाजूंचे वर्गमूळ घेऊन]

Concept: समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय
  Is there an error in this question or solution?
Chapter 1: समरूपता - सरावसंच 1.4 [Page 25]

RELATED QUESTIONS

दोन समरूप त्रिकोणांच्या संगत बाजूंचे गुणोत्तर 3 : 5 आहे, तर त्यांच्या क्षेत्रफळांचे गुणोत्तर काढा.


Δ LMN ~ Δ PQR, 9 × A (ΔPQR ) = 16 × A (ΔLMN) जर QR = 20 तर MN काढा.


ΔABC व ΔDEF हे दोन्ही समभुज त्रिकोण आहेत, A(ΔABC) : A(ΔDEF) = 1 : 2 असून AB = 4 आहे तर DE ची लांबी किती?


जर ΔXYZ ~ ΔPQR आणि A(ΔXYZ) = 25 चौसेमी, A(ΔPQR) = 4 चौसेमी, तर XY : PQ = ?


दोन समरूप त्रिकोणांच्या क्षेत्रफळांचे 9 : 25 गुणोत्तर असेल, तर त्यांच्या संगत बाजूंचे गुणोत्तर किती?


∆ABC ~ ∆PQR, A(∆ABC) = 80 चौ. एकक, A(∆PQR) = 125 चौ. एकक, तर खालील कृती पूर्ण करा.

`("A"(Delta"ABC"))/("A"(Delta"PQR")) = 80/125 = square/square,` म्हणून `"AB"/"PQ" = square/square`


दोन समरूप त्रिकोणांची क्षेत्रफळे 225 चौसेमी, 81 चौसेमी आहेत. जर लहान त्रिकोणाची एक बाजू 12 सेमी असेल, तर मोठ्या त्रिकोणाची संगत बाजू काढा. 


समभुज त्रिकोण PQR ची बाजू 8 सेमी आहे, तर त्या त्रिकोणाच्या बाजूपेक्षा निम्म्या बाजू असणाऱ्या समभुज त्रिकोणाचे क्षेत्रफळ काढा. 


दोन समरूप त्रिकोणांपैकी लहान त्रिकोणाच्या बाजू 4 सेमी, 5 सेमी, 6 सेमी लांबीच्या आहेत आणि मोठ्या त्रिकोणाची परिमिती 90 सेमी आहे, तर मोठ्या त्रिकोणाच्या बाजू काढा.


ΔABC ∼ ΔPQR, ΔABC मध्ये AB = 5.4 सेमी, BC = 4.2 सेमी, AC = 6.0 सेमी, AB : PQ = 3 : 2, तर ΔABC आणि ΔPQR ची रचना करा.


Share
Notifications



      Forgot password?
Use app×