आकृतीत Δ ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC तर सिद्ध करा, CA2 = CB × CD. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements
Sum

आकृतीत Δ ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC तर सिद्ध करा, CA2 = CB × CD.

 

Advertisements

Solution

ΔBAC व ΔADC मध्ये,

∠BAC ≅ ∠ADC  ........[पक्ष]

∠BCA ≅ ∠ACD ..........[सामाईक कोन]

∴ ΔBAC ∼ ΔADC ........[समरूपतेची कोको कसोटी]

∴ `"CA"/"CD" = "CB"/"CA"` .........[समरूप त्रिकोणांच्या संगत बाजू]

∴ CA × CA = CB × CD

∴ CA2 = CB × CD.

Concept: त्रिकोणांच्या समरूपतेच्या कसोट्या
  Is there an error in this question or solution?
Chapter 1: समरूपता - सरावसंच 1.3 [Page 22]

RELATED QUESTIONS

आकृती मधील त्रिकोण समरूप आहेत का? असतील तर कोणत्या कसोटीनुसार?


Δ ABC मध्ये AP ⊥ BC, BQ ⊥ AC B-P-C, A-Q-C तर, Δ CPA ∼ Δ CQB दाखवा. जर AP = 7, BQ = 8, BC = 12 तर AC काढा.


समलंब चौकोन ABCD मध्ये, बाजू AB || बाजू DC कर्ण AC व कर्ण BD हे परस्परांना O बिंदूत छेदतात. AB = 20, DC = 6, OB = 15 तर OD काढा.


जर ΔABC व ΔPQR मध्ये एका एकास एक संगतीत `"AB"/"QR" = "BC"/"PR" = "CA"/"PQ"` तर खालीलपैकी सत्य विधान कोणते?

 


`square`ABCD मध्ये रेख AD || रेख BC. कर्ण AC आणि कर्ण BD परस्परांना बिंदू P मध्ये छेदतात. तर दाखवा की `"AP"/"PD" = "PC"/"BP"`

 


खालीलपैकी कोणती कसोटी समरूपतेची नाही?


आकृतीचे निरीक्षण करून कृती पूर्ण करा.

आकृतीमध्ये, ∠B = 75°, ∠D = 75°

∠B ≅ ______ .............[प्रत्येकी 75°]

∠C ≅ ∠C ..................[______]

∆ABC ~ ∆[______]  ..............[______ समरूपता कसोटीनुसार] 

 


आकृतीमध्ये त्रिकोण ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC. तर सिद्ध करा, की CA2 = CB × CD. 

  


चौकोन ABCD मध्ये बाजू AD || BC, कर्ण AC आणि BD परस्परांना P बिंदूत छेदतात, तर सिद्ध करा, की `"AP"/"PD" = "PC"/"BP".` 


समलंब चौकोन ABCD मध्ये बाजू AB || बाजू CD चौकोनाचे कर्ण हे एकमेकांना बिंदू P मध्ये छेदतात.

त्यावरून खालील प्रश्‍नांची उत्तरे लिहा:

  1. वरील दिलेल्या माहितीवरून आकृती काढा.
  2. व्युत्क्रम कोन व विरुद्ध कोनांची प्रत्येकी एक जोडी लिहा.
  3. समरूप त्रिकोणांची नावे समरूपतेच्या कसोटीसह लिहा.

Share
Notifications



      Forgot password?
Use app×