Advertisement Remove all ads
Advertisement Remove all ads
Theorem
आकृति में त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि `"BD"/"CD" = "AB"/"AC"` है। सिद्ध कीजिए कि AD, कोण BAC का समद्विभाजक है।
Advertisement Remove all ads
Solution
दिया है: ∆ABC की भुजा BC पर बिन्दु D इस प्रकार कि
`"BD"/"CD" = "AB"/"AC"` …(1)
रचना: AD को बढ़ाइए। CE || AD रेखा खींचिए जो AD को बिन्दु E पर प्रतिच्छेद करती है।
अब ∆ABD और ∆ECD में,
∠ABD = ∠ECD
[AB || CE एवं BD तिर्यक रेखा है।]
∠ADB = ∠EDC [शीर्षाभिमुख कोण है]
∆ABD ∼ ∆ECD [AA समरूपता]
`"BD"/"CD" = "AB"/"EC"` …(2)
[समरूप त्रिभुजों के प्रगुण]
`"AB"/"AC" = "AB"/"EC"`
[समीकरण (1) एवं (2) से]
⇒ AC = EC
⇒ ∠CAD = ∠CED …(3) [बराबर भुजाओं के सम्मुख कोण]
लेकिन ∠BAD = ∠CED …(4) [समरूप ∆ABD एवं ∆ECD के संगत कोण हैं।
∴ ∠BAD = ∠CAD [समीकरण (3) एवं (4) से]
अतः AD कोण BAC का समद्विभाजक है।
इति सिद्धम्
Concept: त्रिभुजों की समरूपता के लिए कसौटियाँ
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads