Advertisement Remove all ads

आकृति में त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि BDCDABACBDCD=ABAC है। सिद्ध कीजिए कि AD, कोण BAC का समद्विभाजक है। - Mathematics (गणित)

Advertisement Remove all ads
Advertisement Remove all ads
Theorem

आकृति में त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि `"BD"/"CD" = "AB"/"AC"` है। सिद्ध कीजिए कि AD, कोण BAC का समद्विभाजक है।

 

Advertisement Remove all ads

Solution

दिया है: ∆ABC की भुजा BC पर बिन्दु D इस प्रकार कि
`"BD"/"CD" = "AB"/"AC"` …(1)

रचना: AD को बढ़ाइए। CE || AD रेखा खींचिए जो AD को बिन्दु E पर प्रतिच्छेद करती है।

अब ∆ABD और ∆ECD में,

∠ABD = ∠ECD

[AB || CE एवं BD तिर्यक रेखा है।]

∠ADB = ∠EDC [शीर्षाभिमुख कोण है]

∆ABD ∼ ∆ECD [AA समरूपता]

`"BD"/"CD" = "AB"/"EC"` …(2)
[समरूप त्रिभुजों के प्रगुण]

`"AB"/"AC" = "AB"/"EC"`
[समीकरण (1) एवं (2) से]

⇒ AC = EC

⇒ ∠CAD = ∠CED …(3) [बराबर भुजाओं के सम्मुख कोण]

लेकिन ∠BAD = ∠CED …(4) [समरूप ∆ABD एवं ∆ECD के संगत कोण हैं।

∴ ∠BAD = ∠CAD [समीकरण (3) एवं (4) से]

अतः AD कोण BAC का समद्विभाजक है।

इति सिद्धम्

Concept: त्रिभुजों की समरूपता के लिए कसौटियाँ
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

NCERT Mathematics Class 10 [गणित कक्षा १० वीं]
Chapter 6 त्रिभुज
अभ्यास 6.6 (ऐच्छिक)* | Q 9. | Page 168
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×