आकृती मध्ये रेख PQ || रेख DE, A (Δ PQF) = 20 एकक, जर PF = 2 DP आहे, तर A(squareDPQE) काढण्यासाठी खालील कृती पूर्ण करा. A(Δ PQF) = 20 एकक, PF = 2 DP, DP = x मानू. ∴ PF = 2x DF = DP + square - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements
Sum

आकृती मध्ये रेख PQ || रेख DE, A (Δ PQF) = 20 एकक, जर PF = 2 DP आहे, तर A(`square"DPQE"`) काढण्यासाठी खालील कृती पूर्ण करा.

A(Δ PQF) = 20 एकक, PF = 2 DP, DP = x मानू. ∴ PF = 2x

DF = DP + `square` = `square` + `square` = 3x

Δ FDE व Δ FPQ मध्ये

∠ FDE ≅ ∠`square` (संगत कोन)

∠ FED ≅ ∠`square` (संगत कोन)

∴ Δ FDE ∼ Δ FPQ .............(कोको कसोटी)

∴ `("A"(Δ"FDE"))/("A"(Δ"FPQ")) = square/square = ((3"x")^2)/((2"x")^2) = 9/4`

A(Δ FDE) = `9/4` × A(Δ FPQ ) = `9/4 xx square = square`

A(`square` DPQE) = A(Δ FDE) - A(Δ FPQ)

= `square - square`

= `square`

Advertisements

Solution

A(Δ PQF) = 20 चौ एकक, PF = 2 DP, DP = x मानू. ................[पक्ष]

∴ PF = 2x

DF = DP + PF = x + 2x = 3x ........[D-P-F]

Δ FDE व Δ FPQ मध्ये,

∠ FDE ≅ ∠FPQ .........[संगत कोन]

∠ FED ≅ ∠FQP ...........[संगत कोन]

∴ Δ FDE ∼ Δ FPQ .............[समरूपतेची कोको कसोटी]

∴ `("A"(Δ"FDE"))/("A"(Δ"FPQ")) = ("DF"^2)/("PF"^2) = ((3"x")^2)/((2"x")^2) = 9/4` ..........[समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय]

∴ A(Δ FDE) = `9/4` × A(Δ FPQ)

= `9/4 xx 20` = 45 चौ एकक 

A(`square` DPQE) = A(Δ FDE) - A(Δ FPQ)

= 45 - 20

= 25 चौ एकक

Concept: त्रिकोणांच्या समरूपतेच्या कसोट्या
  Is there an error in this question or solution?
Chapter 1: समरूपता - सरावसंच 1.4 [Page 25]

RELATED QUESTIONS

आकृती मधील त्रिकोण समरूप आहेत का? असतील तर कोणत्या कसोटीनुसार?


समलंब चौकोन ABCD मध्ये, बाजू AB || बाजू DC कर्ण AC व कर्ण BD हे परस्परांना O बिंदूत छेदतात. AB = 20, DC = 6, OB = 15 तर OD काढा.


आकृतीत रेख AC व रेख BD परस्परांना P बिंदूत छेदतात आणि `"AP"/"CP" = "BP"/"DP"` तर सिद्ध करा, ΔABP ∼ ΔCDP.


आकृतीत Δ ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC तर सिद्ध करा, CA2 = CB × CD.

 


ΔABC मध्ये ∠A = 90°. `square`DEFG या चौरसाचे D व E हे शिरोबिंदू बाजू BC वर आहेत. बिंदू F हा बाजू AC वर आणि बिंदू G हा बाजू AB वर आहे. तर सिद्ध करा. DE2 = BD × EC (ΔGBD व ΔCFE हे समरूप दाखवा. GD = FE = DE याचा उपयोग करा.) 

 


आकृतीमधील त्रिकोण समरूप आहेत का? असतील तर कोणत्या कसोटीनुसार?


आकृतीचे निरीक्षण करून त्रिकोण समरूप आहेत का ते ठरवा. असल्यास समरूपता कसोटी लिहा. ∠P = 35°, ∠X = 35° व ∠Q = 60°, ∠Y = 60° 

 


आकृतीचे निरीक्षण करून कृती पूर्ण करा.

आकृतीमध्ये, ∠B = 75°, ∠D = 75°

∠B ≅ ______ .............[प्रत्येकी 75°]

∠C ≅ ∠C ..................[______]

∆ABC ~ ∆[______]  ..............[______ समरूपता कसोटीनुसार] 

 


आकृतीमध्ये समलंब चौकोन PQRS मध्ये बाजू PQ || बाजू SR, AR = 5 AP, तर सिद्ध करा, SR = 5 PQ. 

 


आकृतीमध्ये त्रिकोण ABC मध्ये बाजू BC वर D हा बिंदू असा आहे, की ∠BAC = ∠ADC. तर सिद्ध करा, की CA2 = CB × CD. 

  


Share
Notifications



      Forgot password?
Use app×