आकृती मध्ये, रेख EF हा व्यास आणि रेख DF हा स्पर्शिकाखंड आहे. वर्तुळाची त्रिज्या r आहे. तर सिद्ध करा - DE × GE = 4r2 - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements
Sum

आकृती मध्ये, रेख EF हा व्यास आणि रेख DF हा स्पर्शिकाखंड आहे. वर्तुळाची त्रिज्या r आहे. तर सिद्ध करा - DE × GE = 4r

 

Advertisements

Solution

पक्ष: रेख EF हा व्यास आहे.

रेख DF ही वर्तुळाची स्पर्शिका आहे.

त्रिज्या = r

साध्य: DE × GE = 4r2  

रचना: रेख GF जोडा.

सिद्धता:

रेख EF हा व्यास आहे.  .....[पक्ष]

∴ ∠EGF = 90°    .....(i) [अर्धवर्तुळातील अंतर्लिखित कोन]

रेख DF ही बिंदू F मध्ये वर्तुळाला स्पर्श करणारी स्पर्शिका आहे. .....[पक्ष]

∴ ∠EFD = 90°    .....(ii) [स्पर्शिका-त्रिज्या प्रमेय]

ΔDFE मध्ये,

∠EFD = 90°   .....[(ii) वरून]

रेख FG ⊥ बाजू DE .....[(i) वरून]

∴ ΔEFD ∼ ΔEGF  .....[काटकोन त्रिकोणांची समरूपता]

∴ `"EF"/"GE" = "DE"/"EF"` .......[समरूप त्रिकोणांच्या संगत बाजू]

∴ DE × GE = EF2

∴ DE × GE = (2r).......[व्यास = 2r]

∴ DE × GE = 4r2

Concept: स्पर्शिका - त्रिज्या प्रमेय
  Is there an error in this question or solution?
Chapter 3: वर्तुळ - सरावसंच 3.5 [Page 82]

RELATED QUESTIONS

त्रिज्या 4.5 सेमी असलेल्या वर्तुळाच्या दोन स्पर्शिका परस्परांना समांतर आहेत. तर त्या स्पर्शिकांतील अंतर किती हे सकारण लिहा.


एका वर्तुळाच्या केंद्रापासून 12.5 सेमी अंतरावरील एका बिंदूतून त्या वर्तुळाला काढलेल्या स्पर्शिकाखंडाची लांबी 12 सेमी आहे. तर त्या वर्तुळाचा व्यास किती सेमी आहे?


शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा. 


शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा. 


आकृती मध्ये, केंद्र C असलेल्या वर्तुळाचा रेख AB हा व्यास आहे. वर्तुळाची स्पर्शिका PQ वर्तुळाला बिंदू T मध्ये स्पर्श करते. रेख AP ⊥ रेषा PQ आणि रेख BQ ⊥ रेषा PQ. तर सिद्ध करा - रेख CP ≅ रेख CQ. 

 


सोबतच्या आकृतीमध्ये, केंद्र C असलेल्या वर्तुळात रेषा AB या वर्तुळाला बिंदू A मध्ये स्पर्श करते, तर ∠CAB चे माप किती अंश आहे? का? 

 


वर्तुळाच्या बाह्यभागातील बिंदूपासून त्या वर्तुळाला काढलेले स्पर्शिकाखंड एकरूप असतात हे प्रमेय सिद्ध करण्यासाठी आकृतीच्या आधारे खालील कृती पूर्ण करा.

पक्ष: `square`

साध्य: `square`

सिद्धता:  

त्रिज्या AP आणि AQ काढून प्रमेयाची खाली दिलेली सिद्धता रिकाम्या जागा भरून पूर्ण करा.

ΔPAD आणि ΔQAD यांमध्ये,

बाजू PA ≅ बाजू `square` ...........[एकाच वर्तुळाच्या त्रिज्या]

बाजू AD ≅ बाजू AD ...............[`square`]

∠APD ≅ ∠AQD = 90°  ............[स्पर्शिका-त्रिज्या प्रमेय]

∴ ΔPAD ≅ ΔQAD ..................[`square`]

∴ बाजू DP ≅ बाजू DQ ...............[`square`]


आकृतीत रेख RM आणि रेख RN हे केंद्र O असलेल्या वर्तुळाचे स्पर्शिका खंड आहेत, तर रेख OR हा ∠MRN आणि ∠MON या दोन्ही कोनांचा दुभाजक आहे, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.

सिद्धता:

ΔRMO आणि ΔRNO यांमध्ये,

∠RMO ≅ ∠RNO = 90° ...............[`square`]

कर्ण OR ≅ कर्ण OR …..............[`square`]

बाजू OM ≅ बाजू [`square`]  ..........…[एकाच वर्तुळाच्या त्रिज्या]

∴ ΔRMO ≅ ΔRNO ….......[`square`]

∠MOR ≅ ∠NOR

तसेच, ∠MRO ≅ [`square`] ......................[`square`]

∴ रेख OR ∠MRN आणि ∠MON या दोन्ही कोनांची दुभाजक आहे.


खालील प्रमेय सिद्ध करा:

वर्तुळाच्या बाह्यभागातील बिंदूपासून त्या वर्तुळाला काढलेले स्पर्शिकाखंड एकरूप असतात.


आकृतीमध्ये, O हा वर्तुळाचा केंद्रबिंदू आहे. रेषा AQ ही स्पर्शिका आहे. जर OP = 3 आणि m(कंस PM) = 120° असेल, तर AP ची लांबी काढा? 

 


Share
Notifications



      Forgot password?
Use app×