Advertisement Remove all ads

A0 Xn + A1 Xn−1 + A2 Xn−2 + ... + An−1 X + An. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an

Advertisement Remove all ads

Solution

\[\frac{d}{dx}\left[ \left( a_0 x^n \right) + \frac{d}{dx}\left( a_1 x^{n - 1} \right) + \frac{d}{dx}\left( a_2 x^{n - 2} \right) + . . . + a_{n - 1} x + a_n \right]\]
\[ = a_0 \frac{d}{dx}\left( x^n \right) + a_1 \frac{d}{dx}\left( x^{n - 1} \right) + a_2 \frac{d}{dx}\left( x^{n - 2} \right) + . . . + a_{n - 1} \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( a_n \right)\]
\[ = n a_0 x^{n - 1} + \left( n - 1 \right) a_1 x^{n - 2} + \left( n - 2 \right) a_2 x^{n - 3} + . . . . + a_{n - 1} \left( 1 \right) + 0\]
\[ = n a_0 x^{n - 1} + \left( n - 1 \right) a_1 x^{n - 2} + \left( n - 2 \right) a_2 x^{n - 3} + . . . . + a_{n - 1} \]
\[\]

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Exercise 30.3 | Q 13 | Page 34

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×