Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 13 cm, 14 cm and 15 cm and the parallelogram stands on the base 14 cm, find the height of the parallelogram.
Advertisement Remove all ads
Solution
The sides of a triangle DCE are
DC = 15 cm, CE = 13 cm, ED = 14 cm
Let h be the height of parallelogram ABCD
Given,
Perimeter of ΔDCE
2s = DC + CE + ED
`⇒S=1/2(15+13+4)`
`⇒s=1/2(42)`
`⇒s=21cm`
π΄πππ ππ Δπ·πΆπΈ = `sqrt(s(s-dc)(s-ce)(s-ed))`
`=sqrt(21(21-15)(21-13)(21-14))`
`=sqrt(21xx7xx8xx6)`
`=sqrt(84xx84)`
`84 cm^2`
Given that
Area of Δππ π·πΆπΈ= ππππ ππ π΄π΅πΆπ·
= Area of parallelogram ABCD = =`84cm^2`
⇒ 24×β=84 [∴ Area of parallelogram = base × height]
⇒ h = 6 cm
Concept: Area of a Triangle by Heron's Formula
Is there an error in this question or solution?