A Spring Having with a Spring Constant 1200 N M–1 Is Mounted on a Horizontal Table as Shown in Fig. a Mass of 3 Kg is Attached to the Free End of the Spring. the Mass is Then Pulled Sideways to a Distance of 2.0 Cm and Released. Determine (I) the Frequency of Oscillations, (Ii) Maximum Acceleration of the Mass, and (Iii) the Maximum Speed of the Mass. - Physics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

A spring having with a spring constant 1200 N m–1 is mounted on a horizontal table as shown in Fig. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released.

Determine (i) the frequency of oscillations, (ii) maximum acceleration of the mass, and (iii) the maximum speed of the mass.

Advertisement Remove all ads

Solution 1

Spring constant, k = 1200 N m–1

Mass, = 3 kg

Displacement, A = 2.0 cm = 0.02 cm

(i) Frequency of oscillation v, is given by the relation:

`v = 1/T = 1/(2pi) sqrt(k/m)`

Where, T is the time period

`:. v = 1/(2xx3.14) sqrt(1200/3) = 3.18 "m/s"`

Hence, the frequency of oscillations is 3.18 cycles per second.

ii) Maximum acceleration (a) is given by the relation:

a = ω2 A

Where

ω = Angular frequency  = `sqrt(k/m)`

A = Maximum displacement

`:. a = k/m A = (1200xx0.02)/(3) =  8 ms^(-2)`

Hence, the maximum acceleration of the mass is 8.0 m/s2

iii) Maximum velocity, vmax = Aω

`= A sqrt(k/m) = 0.02 xx sqrt(1200/3) = 0.4 "m/s"`

Hence, the maximum velocity of the mass is 0.4 m/s.

Solution 2

K = 1200 `Mn^(-1)`; m = 3.0 kg, a= 2.0 cm = 0.02 m

i) Frequency, `v =  1/T = 1/(2pi) sqrt(k/m) = 1/(2xx3.14) sqrt(1200/3) = 3.2 s^(-1)`

ii) Acceleration, A = `omega^2` `" " y = k/m  y`

Acceleration will be maximum when y is maximum i.e y = q

:. max acceleration,` A_"max" = (ka)/m =(1200xx0.02)/3 = 8 ms^(-2)`

iii) Max speed of the mass will be when it is passing throught mean position

`V_"max" = aomega = sqrt(k/m) = 0.02 xx sqrt(1200/3) = 0.4 ms^(-1)`

Concept: Some Systems Executing Simple Harmonic Motion
  Is there an error in this question or solution?
Chapter 14: Oscillations - Exercises [Page 359]

APPEARS IN

NCERT Class 11 Physics
Chapter 14 Oscillations
Exercises | Q 9 | Page 359

Video TutorialsVIEW ALL [1]

Share
Notifications

View all notifications


      Forgot password?
View in app×