Short Note
A solid wire of radius 10 cm carries a current of 5.0 A distributed uniformly over its cross section. Find the magnetic field B at a point at a distance (a) 2 cm (b) 10 cm and (c) 20 cm away from the axis. Sketch a graph B versus x for 0 < x < 20 cm.
Advertisement Remove all ads
Solution
Given:
Magnitude of current, i = 5 A
Radius of the wire, b\[= 10 \text{ cm }= 10 \times {10}^{- 2}\] m
For a point at a distance a from the axis,
Current enclosed, \[i' = \frac{i}{\pi b^2} \times \pi a^2\]
Current enclosed, \[i' = \frac{i}{\pi b^2} \times \pi a^2\]
By Ampere's circuital law,
\[\oint B . dl = \mu_0 i'\]
For the given conditions,
\[B \times 2\pi a = \mu_0 \frac{i}{\pi b^2} \times \pi a^2 \]
\[ \Rightarrow B = \frac{\mu_0 ia}{2\pi b^2} \ldots\left( 1 \right)\]
\[(a)\text{ a = 2 cm }= 2 \times {10}^{- 2} \] m
Again, using the circuital law, we get
\[B = \frac{4\pi \times {10}^{- 7} \times 5 \times 2 \times {10}^{- 2}}{2\pi \times {10}^{- 2}}\]
\[ = 2 \times {10}^{- 6} T = 2 \mu \] T
(b) On putting \[\text{ a = 10 cm }= 10 \times {10}^{- 2} \] m in (1), we get
B = 10 `μ T`
(c)Using the circuital law, we get
\[\oint B . dl = \mu_0 i\]
\[B = \frac{\mu_0 i}{2\pi a} = \frac{2 \times {10}^{- 7} \times 5}{20 \times {10}^{- 2}}\]
\[ = 5 \times {10}^{- 6} T = 5 \mu \] T
\[B = \frac{\mu_0 i}{2\pi a} = \frac{2 \times {10}^{- 7} \times 5}{20 \times {10}^{- 2}}\]
\[ = 5 \times {10}^{- 6} T = 5 \mu \] T
Concept: Ampere’s Circuital Law
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads