A Small Pin Fixed on a Table Top is Viewed from Above from a Distance of 50 Cm. by What Distance Would the Pin Appear to Be Raised If It is Viewed from the Same Point Through a 15 Cm - Physics


A small pin fixed on a table top is viewed from above from a distance of 50 cm. By what distance would the pin appear to be raised if it is viewed from the same point through a 15 cm thick glass slab held parallel to the table? Refractive index of glass = 1.5. Does the answer depend on the location of the slab?



Actual depth of the pin, d = 15 cm

Apparent depth of the pin = d'

Refractive index of glass, μ = 1.5

Ratio of actual depth to the apparent depth is equal to the refractive index of glass, i.e.

`μ = "d"/"d'"`

∴ d' = `"d"/μ`

= `15/1.5`

= 10 cm

The distance at which the pin appears to be raised = d' − d = 15 − 10 = 5 cm

For a small angle of incidence, this distance does not depend upon the location of the slab.

Concept: Refraction
  Is there an error in this question or solution?
Chapter 9: Ray Optics and Optical Instruments - Exercise [Page 345]


NCERT Physics Class 12
Chapter 9 Ray Optics and Optical Instruments
Exercise | Q 9.16 | Page 345
NCERT Physics Class 12
Chapter 9 Ray Optics and Optical Instruments
Exercise | Q 16 | Page 347

Video TutorialsVIEW ALL [2]


(a) Figure shows a cross-section of a ‘light pipe’ made of a glass fibre of refractive index 1.68. The outer covering of the pipe is made of a material of refractive index 1.44. What is the range of the angles of the incident rays with the axis of the pipe for which total reflections inside the pipe take place, as shown in the figure?

(b) What is the answer if there is no outer covering of the pipe?

A diver under water, looks obliquely at a fisherman standing on the bank of a lake. Would the fisherman look taller or shorter to the diver than what he actually is?

Monochromatic light of wavelength 589 nm is incident from air on a water surface. If µ for water is 1.33, find the wavelength, frequency and speed of the refracted light.

A fish which is at a depth of l2 em .in water `(mu = 4/3)` is viewed by an observer on the bank of a lake. Its apparent depth as observed: by the observer is:

a) 3 cm

b) 9 cm

c) 12 cm

d) 16 cm

 A converging lens has a focal length of 20 cm in air. It is made of a material of refractive index 1·6. If it is immersed in a liquid of refractive index 1·3, find its new focal length.

Why does a diamond shine more than a glass piece cut to the same shape?

A narrow beam of light passes through a slab obliquely and is then received by an eye following figure. The index of refraction of the material in the slab fluctuates slowly with time. How will it appear to the eye? The twinkling of stars has a similar explanation.

A narrow beam of white light goes through a slab having parallel faces.

(a) The light never splits in different colours

(b) The emergent beam is white

(c) The light inside the slab is split into different colours

(d) The light inside the slab is white

The refractive index of a material changes by 0.014 as the colour of the light changes from red to violet. A rectangular slab of height 2.00 cm made of this material is placed on a newspaper. When viewed normally in yellow light, the letters appear 1.32 cm below the top surface of the slab. Calculate the dispersive power of the material.

If the light moving in a straight line bends by a small but fixed angle, it may be a case of 
(a) reflection
(b) refraction
(c) diffraction
(d) dispersion.

A pole of length 1.00 m stands half dipped in a swimming pool with water level 50.0 cm higher than the bed. The refractive index of water is 1.33 and sunlight is coming at an angle of 45° with the vertical. Find the length of the shadow of the pole on the bed.

Consider the situation in figure. The bottom of the pot is a reflecting plane mirror, S is a small fish and T is a human eye. Refractive index of water is μ. (a) At what distance(s) from itself will the fish see the image(s) of the eye? (b) At what distance(s) from itself will the eye see the image(s) of the fish.

Locate the image formed by refraction in the situation shown in figure.

Figure shows a transparent hemisphere of radius 3.0 cm made of a material of refractive index 2.0. (a) A narrow beam of parallel rays is incident on the hemisphere as shown in the figure. Are the rays totally reflected at the plane surface? (b) Find the image formed by the refraction at the first surface. (c) Find the image formed by the reflection or by the refraction at the plane surface. (d) Trace qualitatively the final rays as they come out of the hemisphere.

A convex lens of focal length 20 cm and a concave lens of focal length 10 cm are placed 10 cm apart with their principal axes coinciding. A beam of light travelling parallel to the principal axis and having a beam diameter 5.0 mm, is incident on the combination. Show that the emergent beam is parallel to the incident one. Find the beam diameter of the emergent beam.

A converging beam of light travelling in air converges at a point P as shown in the figure. When a glass sphere  of refractive index 1 . 5 is introduced in between the path of the beam, calculate the new position of the image. Also draw the ray diagram for the image formed.

A point 'O' marked on the surface of a glass sphere of diameter 20 cm is viewed through glass from the position directly opposite to the point O. If the refractive index of the glass is 1⋅5, find the position of the image formed. Also, draw the ray diagram for the formation of the image

Choose the correct option.

There are different fish, monkeys, and water of the habitable planet of the star Proxima b. A fish swimming underwater feels that there is a monkey at 2.5 m on the top of a tree. The same monkey feels that the fish is 1.6 m below the water surface. Interestingly, height of the tree and the depth at which the fish is swimming are exactly same. Refractive index of that water must be

Answer the following question.

Define absolute refractive index and relative refractive index. Explain in brief with an illustration for each.

Stars twinkle due to ______.

What is a principle of reversibility?

What is relative refractive index?

Obtain the equation for apparent depth.

Why do stars twinkle?

Obtain the equation for critical angle.

What is looming?

How does an endoscope work?

Obtain the equation for radius of illumination (or) Snell’s window.

Obtain the equation for lateral displacement of light passing through a glass slab.

A ray of light travels from air to water to glass and aga in from glass to air. Refractive index of water with respect to air is 'x' glass with respect to water is 'y' and air with respect to glass is 'z'. which one of the following is correct?

A light travels through water in the beaker. The height of water column is 'h'. Refractive index of water is 'μw'. If c is velocity of light in air, the time taken by light to travel through water will ______.

An object is immersed in a fluid of refractive index 'µ'. In order that the object becomes invisible when observed from outside, it should ______.

When a light ray is incident on a prism at an angle of 45°, the minimum deviation is obtained. If refractive index of material of prism is `sqrt2`, then angle of prism will be ______.

`sin  pi/4=1/sqrt2, sin30^circ=cos60^circ=1/2`

A ray of light passes through equilateral prism such that the angle of incidence is equal to angle of emergence and each of these angles is equal to `(3/4)^"th"` the angle of prism. The angle of deviation is ______.

The critical angle is maximum when light travels from ______.


When a ray of light is incident normally on one refracting surface of an equilateral prism of refractive index 1.5, the emerging ray ______.


When a ray of light is refracted from one medium to another, then the wavelength changes from 6000Å to 4000Å. The critical angle for the interface will be ______.

Light travels from an optically denser medium 'A' into the optically rarer medium 'B' with speeds 1.8 × 108 m/s and 2.7 × 108 m/s respectively. Then critical angle between them is ______.

1 and µ2 are the refractive indices of media A and B respectively.)

A concave mirror of focal length 'f1' is placed at a distance 'd' from a convex lens of focal length 'f2'. A parallel beam of light coming from infinity parallel to principal axis falls on the convex lens and then after refraction falls on the concave mirror. If it is to retrace the path, the distance 'd' should be ______.

For a rectangular slab, refraction takes place at ______.

Light travels in two media A and B with speeds 1.8 × 108 ms−1 and 2.4 × 108 ms−1 respectively. Then the critical angle between them is:

A ray of unpolarised light is incident on the surface of glass plate of µ = 1.54 at polarising angle, then angle of refraction is

Consider an extended object immersed in water contained in a plane trough. When seen from close to the edge of the trough the object looks distorted because ______.

  1. the apparent depth of the points close to the edge are nearer the surface of the water compared to the points away from the edge.
  2. the angle subtended by the image of the object at the eye is smaller than the actual angle subtended by the object in air.
  3. some of the points of the object far away from the edge may not be visible because of total internal reflection.
  4. water in a trough acts as a lens and magnifies the object.

A circular disc of radius ‘R’ is placed co-axially and horizontally inside an opaque hemispherical bowl of radius ‘a’ (Figure). The far edge of the disc is just visible when viewed from the edge of the bowl. The bowl is filled with transparent liquid of refractive index µ and the near edge of the disc becomes just visible. How far below the top of the bowl is the disc placed?

A convex lens made of material of refractive index 1.5 and having a focal length of 10 cm is immersed in a liquid of refractive index 3.0. The lens will behave as ______.


      Forgot password?
Use app×