Advertisement Remove all ads

A point P with position vector ijk-14i^+39j^+28k^5 divides the line joining A (1, 6, 5) and B in the ratio 3 : 2, then find the point B. - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

A point P with position vector `(- 14hat"i" + 39hat"j" + 28hat"k")/5` divides the line joining A (1, 6, 5) and B in the ratio 3 : 2, then find the point B.

Advertisement Remove all ads

Solution

Let A, B and P have position vectors a, b and p respectively.

Then `bar"a" = - hat"i" + 6hat"j" + 5hat"k"`,

`bar"p" = (- 14hat"i" + 39hat"j" + 28hat"k")/5`

Now, P divides AB internally in the ratio 3 : 2

∴ `bar"p" = (3bar"b" + 2bar"a")/5`

∴ `5bar"p" = 3bar"b" + 2bar"a"`

∴ `3bar"b" = 5bar"p" - 2bar"a"`

∴ `3bar"b" = 5((- 14hat"i" + 39hat"j" + 28hat"k")/5) - 2(- hat"i" + 6hat"j" + 5hat"k")`

`= - 14hat"i" + 39hat"j" + 28hat"k" + 2hat"i" - 12hat"j" - 10hat"k"`

`= - 12hat"i" + 27hat"j" + 18hat"k"`

∴ `bar"b" = - 4hat"i" + 9hat"j" + 6hat"k"`

∴ coordinates of B are (-4, 9, 6).

Concept: Vectors and Their Types
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×