A plane electromagnetic wave of frequency 500 MHz is travelling in a vacuum along a y-direction. At a particular point in space and time, BB→ = 8.0 × 10-8 ZZ^T. The value of the electric - Physics (JEE Main)

Advertisements
Advertisements
MCQ
Fill in the Blanks

A plane electromagnetic wave of frequency 500 MHz is travelling in a vacuum along a y-direction.

At a particular point in space and time, `vec"B"` = 8.0 × 10-8 `hat"Z"`T. The value of the electric field at this point is ______.

(speed of light = 3 × 108 ms-1)

`hat x, hat y, hat z` are unit vectors along x, y, and Z directions.

Options

  • 2.6`hatx"V"/"m"`

  • `-2.6haty"V"/"m"`

  • 24`hatx"V"/"m"`

  • -24`hatx"V"/"m"`

Advertisements

Solution

The value of the electric field at this point is `bb(-24hatx"V"/"m")`.

Explanation:

Given,

`vec"B"` = 8 × 10-8 `hatz`T and c = 3  × 108 m/s

Using the relation

E = Bc = (8 × 10-8) (3 × 108) = 24

Given: Electromagnetic wave travels in a direction along the y-axis.

Since, E × B = c;

Magnetic Field B is along the z-axis and the wave travels along the y-axis.

So, `(-hatx) xx(hatz) = haty"`

The electric field, E will be along the negative x direction.

Hence, `vec"E"` = -24 `hatx` V/m.

  Is there an error in this question or solution?

RELATED QUESTIONS

Write mathematical expressions for electric and magnetic fields of an electromagnetic wave propagating along the z-axis.


A charged particle oscillates about its mean equilibrium position with a frequency of 109 Hz. What is the frequency of the electromagnetic waves produced by the oscillator?


In the study of a photoelectric effect the graph between the stopping potential V and frequency v of the incident radiation on two different metals P and Q is shown below:

(i) Which one of the two metals has higher threshold frequency?

(ii) Determine the work function of the metal which has greater value.

(iii) Find the maximum kinetic energy of electron emitted by light of frequency 8 × 1014 Hz for this metal.


What is the ratio of the speed of gamma rays to that of radio waves in a vacuum?


How are electric vector `(vec "E")`, magnetic vector `(vec "B")` and velocity vector `(vec "C")` oriented in an electromagnetic wave?


 Which segment of electromagnetic waves has highest frequency? How are these waves produced? Give one use of these waves.


Explain briefly how electromagnetic waves are produced by an oscillating charge. How is the frequency of the em waves produced related to that of the oscillating charge?


In a microwave oven, the food is kept in a plastic container and the microwaves is directed towards the food. The food is cooked without melting or igniting the plastic container. Explain.


Can an electromagnetic wave be deflected by an electric field or a magnetic field?


A wire carries an alternating current i = i0 sin ωt. Is there an electric field in the vicinity of the wire?


A capacitor is connected to an alternating-current source. Is there a magnetic field between the plates?


A plane electromagnetic wave is passing through a region. Consider (a) electric field (b) magnetic field (c) electrical energy in a small volume and (d) magnetic energy in a small volume. Construct the pairs of the quantities that oscillate with equal frequencies.


An electromagnetic wave going through vacuum is described by
E = E0 sin (kx − ωt); B = B0 sin (kx − ωt).
Which of the following equations is true?


Displacement current goes through the gap between the plates of a capacitor when the charge of the capacitor

(a) increases
(b) decreases
(c) does not change
(d) is zero


Speed of electromagnetic waves is the same


Consider the situation of the previous problem. Define displacement resistance Rd = V/idof the space between the plates, where V is the potential difference between the plates and id is the displacement current. Show that Rd varies with time as `R_d = R(e^(t"/"tau) - 1)` .


A laser beam has intensity 2.5 × 1014 W m−2. Find amplitudes of electric and magnetic fields in the beam.


The energy associated with light of which of the following colours is minimum : 


This is an example of step-up transformer .


Define frequency modulation and state any one advantage of frequency modulation (FM) over amplitude modulation (AM). 


State any one property which is common to all electromagnetic waves.


The energy levels of an atom of a certain element are shown in the given figure. Which one of the transitions A, B, C, D or E will result in the emission of photons of electromagnetic radiation of wavelength 618.75 nm? Support your answer with mathematical calculations.


Consider an oscillator which has a charged particle oscillating about its mean position with a frequency of 300 MHz. The wavelength of electromagnetic waves produced by this oscillator is ______.


An e.m. wave is propagating in a medium with a velocity `vec"v" = "v" hat"i"`. The instantaneous oscillating electric field of this e.m. wave is along +y-axis, then the direction of an oscillating magnetic field of the e.m. wave will be along:


If the magnetic monopole exists, then which of the Maxwell’s equation to be modified?


Which of the following is an electromagnetic wave?


Let E = E0 sin[106 x -ωt] be the electric field of plane electromagnetic wave, the value of ω is ______.


Write down the integral form of modified Ampere’s circuital law.


Write notes on Gauss' law in magnetism.


Why are e.m. waves non-mechanical?


Discuss the Hertz experiment.


A transmitter consists of LC circuit with an inductance of 1 μH and a capacitance of 1 μF. What is the wavelength of the electromagnetic waves it emits?


The electric field of a plane electromagnetic wave travelling in +ve z-direction is described by ______.


A man standing on the road has to hold his umbrella at 30° with the vertical to keep the rain away. He throws away the umbrella and starts, running at 10 km/h and finds raindrops hitting his head vertically. The speed of the raindrops with respect to the road is ______.


In space communication, the sound waves can be sent from one place to another


A plane electromagnetic wave travels in free space along x-axis. At a particular point in space, the electric field along y-axis is 9.3 Vm−1. The magnetic induction (B) along z-axis is:


If a source is transmitting electromagnetic waves of frequency 8.2 × 106 Hz. then wavelength of electromagnetic waves transmitted from the source will be.


The velocity of light in vacuum can be changed by changing


Which of the following are not electromagnetic waves?


The sun delivers 103w/m2 of electromagnetic flux to the earth's surface. The total power that is incident on a roof of dimension 8m/10m will be


Dimensions of ε0 `(d phi_ε)/(dt)` are of


For which frequency of light, the eye is most sensitive?


Electromagnetic waves are produced by ______.


Which of the following type of radiations are radiated by an oscillating electric charge?


For a plane electromagnetic wave propagating in x-direction, which one of the following combinations gives the correct possible directions for electric field (E) and magnetic field (B) respectively?


For a plane electromagnetic wave propagating in the x-direction, which one of the following combinations gives the correct possible directions for the electric field (E) and magnetic field (B) respectively?


Why is the orientation of the portable radio with respect to broadcasting station important?


The intensity of the light from a bulb incident on a surface is 0.22 W/m2 . The amplitude of the magnetic field in this light-wave is ______× 10–9 T. 

(Given: Permittivity of vacuum ε0 = 8.85 × 10–12 C2 N–1 – m–2, speed of light in vacuum c = 3 × 108 ms-1)


For an electromagnetic wave travelling in free space, the relation between average energy densities due to electric (Ue) and magnetic (Um) fields is ______.


A plane electromagnetic wave, has frequency of 2.0 × 1010 Hz and its energy density is 1.02 × 10-8 J/m3 in vacuum. The amplitude of the magnetic field of the wave is close to `(1/(4piepsilon_0) = 9xx10^9"Nm"^2/"C"^2  "and speed of light" = 3 xx 10^8  "m"  "s"^-1)`:


The electric field in a plane electromagnetic wave is given by `vecE = 200cos[((0.5 xx 10^3)/m)x - (1.5 xx 10^11 "rad"/s xx t)]V/mhatj`. If the wave falls normally on a perfectly reflecting surface having an area of 100 cm2. If the radiation pressure exerted by the E.M. wave on the surface during a 10-minute exposure is `x/10^9 N/m^2`. Find the value of x.


A plane electromagnetic wave travels in free space along the x-direction. The electric field component of the wave at a particular point of space and time is E = 6 Vm-1 along the y-direction. Its corresponding magnetic field component, B would be ______.


A plane electromagnetic wave with frequency of 30 MHz travels in free space. At particular point in space and time, electric field is 6 V/m. The magnetic field at this point will be x × 10-8 T. The value of x is ______.


An electromagnetic wave of frequency 3 GHz enters a dielectric medium of relative electric permittivity 2.25 from vacuum. The wavelength of this wave in that medium will be ______ × 10-2 cm. 


In a plane electromagnetic wave, the direction of electric field and magnetic field are represented by `hat"k"` and 2`hat"i" - 2hat"j"`, respectively. What is the unit vector along direction of propagation of the wave.


A 27 mW laser beam has a cross-sectional area of 10 mm2. The magnitude of the maximum electric field in this electromagnetic wave is given by:

[Given permittivity of space ∈0 = 9 × 10-12 SI units, Speed of light c = 3  108 m/s] 


An electromagnetic wave of frequency v = 3.0 MHz passes from vacuum into a dielectric medium with permittivity ∈ = 4.0. Then ______.


What is the source of energy of electromagnetic waves?


Name the electromagnetic wave/radiation which is used to study crystal structure.


Share
Notifications



      Forgot password?
Use app×