Advertisement Remove all ads

A Person with a Normal Near Point (25 Cm) Using a Compound Microscope with Objective of Focal Length 8.0 Mm and an Eyepiece of Focal Length 2.5 Cm Can Bring an Object Placed at 9.0 Mm from the Objective in Sharp Focus. What is the Separation Between the Two Lenses? Calculate the Magnifying Power of the Microscope, - Physics

A person with a normal near point (25 cm) using a compound microscope with the objective of focal length 8.0 mm and an eyepiece of focal length 2.5 cm can bring an object placed at 9.0 mm from the objective in sharp focus. What is the separation between the two lenses? Calculate the magnifying power of the microscope,

Advertisement Remove all ads

Solution

Focal length of the objective lens, fo = 8 mm = 0.8 cm

Focal length of the eyepiece, fe = 2.5 cm

Object distance for the objective lens, uo = −9.0 mm = −0.9 cm

Least distance of distant vision, = 25 cm

Image distance for the eyepiece, ve = −d = −25 cm

Object distance for the eyepiece = `u_e`

Using the lens formula, we can obtain the value of `u_e` as:

`1/v_e - 1/u_e = 1/f_e`

`1/u_e = 1/v_e - 1/f_e`

`= 1/-25 - 1/2.5 = (-1-10)/25 = (-11)/25`

`:. u_c = - 25/11 = -2.27 cm`

We can also obtain the value of the image distance for the objective lens(v0)using the lens formula.

`1/v_@ = 1/u_@ = 1/f_@`

`1/v_@ = 1/f_@  + 1/u_@`

`= 1/0.8 - 1/0.9 = (0.9 - 0.8)/0.72 = 0.1/0.72`

`:. v_@ = 7.2` 

The distance between the objective lens and the eyepiece = `|u_e| + v_(@)`

= 2.27 + 7.2

= 9.47 cm

The magnifying power of the microscope is calculated as:

`v_@/|u_@| (1+ d/f_e)`

`= 7.2/0.9 (1+ 25/2.5) = 8(1+10) = 88`

Hence, the magnifying power of the microscope is 88.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

NCERT Class 12 Physics Textbook
Chapter 9 Ray Optics and Optical Instruments
Q 12 | Page 346
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×