A Moving Boat is Observed from the Top of a 150 M High Cliff Moving Away from the Cliff. the Angle of Depression of the Boat Changes from 60° to 45° in 2 Minutes. Find the Speed of the Boat in M/Min. - Mathematics

Advertisements
Advertisements
Sum

A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.

Advertisements

Solution


Let AO be the cliff of height 150 m.
Let the speed of the boat be x meters per minute.
And BC is the distance which man travelled.

So, BC = 2x         ....[ ∵Distance = Speed x Time ]

tan(60°) = `"AO"/"OB"`

`sqrt3` = `150/"OB"`

⇒ OB = `(150sqrt3)/3` = `50sqrt3`

tan(45°) = `"AO"/"OC"`

⇒1 = `150/"OC"`

⇒ OC = 150
Now OC = OB + BC

⇒ 150 = `50sqrt3` + 2x

⇒ x = `(150 − 50sqrt3)/2`

⇒ x = 75 − `25sqrt3`

Using `sqrt3 = 1.73`
x = 75 − 25 x 1.732 ≈ 32 m/min 
Hence, the speed of the boat is 32 metres per minute.

  Is there an error in this question or solution?
2018-2019 (March) 30/4/3

RELATED QUESTIONS

 

If `sec alpha=2/sqrt3`  , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.

 

If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`


Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`


Prove the following trigonometric identities

`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`


Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1


If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1


Prove.

`sin"A"/(1+cos"A")=cosec"A"-cot"A"`


Prove.
`sqrt((1-sinA)/(1+sinA))=cosA/(1+sinA)`


If sin A + cos A = m and sec A + cosec A = n, show that: n (m2 - 1) = 2m


Prove the following identitie:

`((cosecA-cotA)^2+1)/(secA(cosecA-cotA))=2cotA`


Prove that

(tanA + cotA) (cosecA - sinA) (secA - cosA) = 1


`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec  theta)`


`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`


Show that none of the following is an identity: 

`sin^2 theta + sin  theta =2`


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


Simplify : 2 sin30 + 3 tan45.


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


If tan θ = 2, where θ is an acute angle, find the value of cos θ. 


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


Evaluate:
`(tan 65°)/(cot 25°)`


Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tanθ + cotθ. 


Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


Prove the following identities.

`costheta/(1 + sintheta)` = sec θ – tan θ


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


tan θ cosec2 θ – tan θ is equal to


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


Choose the correct alternative:

cot θ . tan θ = ?


Choose the correct alternative:

`(1 + cot^2"A")/(1 + tan^2"A")` = ?


If tan θ = `13/12`, then cot θ = ?


(sec θ + tan θ) . (sec θ – tan θ) = ?


Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.

Activity:

L.H.S = `square`

= `cos^2theta xx square    .....[1 + tan^2theta = square]`

= `(cos theta xx square)^2`

= 12

= 1

= R.H.S


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


If cos θ = `24/25`, then sin θ = ?


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


If 2sin2β - cos2β = 2, then β is ______.


If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.


Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos  (α - β)/2` is ______.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


sec θ when expressed in term of cot θ, is equal to ______.


(1 – cos2 A) is equal to ______.


Share
Notifications



      Forgot password?
Use app×