###### Advertisements

###### Advertisements

A line segment which joins any two points on a circle is a ___________

###### Advertisements

#### Solution

A line segment which joins any two points on a circle is a **Chord**

#### APPEARS IN

#### RELATED QUESTIONS

Prove that the line segment joining the points of contact of two parallel tangents of a circle, passes through its centre.

In Fig., if AB = AC, prove that BE = EC

ABCD is a quadrilateral such that ∠D = 90°. A circle (O, r) touches the sides AB, BC, CD and DA at P,Q,R and If BC = 38 cm, CD = 25 cm and BP = 27 cm, find r.

In two concentric circles, prove that all chords of the outer circle which touch the inner circle are of equal length.

Fill in the blanks:

A point, whose distance from the centre of a circle is greater than its radius lies in __________ of the circle. (exterior/ interior)

O is the center of a circle of radius 8cm. The tangent at a point A on the circle cuts a line through O at B such that AB = 15 cm. Find OB

If the quadrilateral sides touch the circle prove that sum of pair of opposite sides is equal to the sum of other pair.

In the fig. a circle is inscribed in a quadrilateral ABCD in which ∠B = 90° if AD = 23cm,

AB = 29cm and DS = 5cm, find the radius of the circle.

Fill in the blank

Circles having the same centre and different radii are called ...........................circles.

In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC

at P and OA at Q. Prove that:

(i) ΔOPA ≅ ΔOQC, (ii) ΔBPC ≅ ΔBQA.

In the given figure, O is the centre of the circle. If ∠AOB = 140° and ∠OAC = 50°; Find:

(i) ∠ACB, (ii) ∠OBC, (iii) ∠OAB, (iv) ∠CBA.

In the given figure ABC is an isosceles triangle and O is the centre of its circumcircle. Prove that AP bisects angle BPC .

In the given figure, O is the centre of the two concentric circles of radii 4 cm and 6cm respectively. AP and PB are tangents to the outer and inner circle respectively. If PA = 10cm, find the length of PB up to one place of the decimal.

In the given figure common tangents AB and CD to the two circles with centres O_{1} and O_{2} intersect at E. Prove that AB=CD

In fig. 3 are two concentric circles of radii 6 cm and 4 cm with centre O. If AP is a tangent to the larger circle and BP to the smaller circle and length of AP is 8 cm, find the length of BP ?

Tangents PA and PB are drawn from an external point P to two concentric circles with centre O and radii 8 cm and 5 cm respectively, as shown in Fig. 3. If AP = 15 cm, then find the length of BP.

In a cyclic quadrilateral *ABCD*, if *m *∠*A* = 3 (*m* ∠*C*). Find *m* ∠*A*.

The radius of a circle is 6 cm. The perpendicular distance from the centre of the circle to the chord which is 8 cm in length, is

A chord of length 14 cm is at a distance of 6 cm from the centre of a circle. The length of another chord at a distance of 2 cm from the centre of the circle is

An equilateral triangle *ABC *is inscribed in a circle with centre *O*. The measures of ∠*BOC*is

In the given figure, chords *AD* and *BC* intersect each other at right angles at a point P. If ∠*DAB* = 35°, then

In the given figure, ABC is a right triangle right-angled at B such that BC = 6 cm and AB = 8 cm. Find the radius of its incircle.

Two concentric circles are of diameters 30 cm and 18 cm. Find the length of the chord of the larger circle which touches the smaller circle.

*AB* and *CD* are common tangents to two circles of equal radii. Prove that *AB* = *CD*.

Choose correct alternative answer and fill in the blank.

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is .........

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is ______.

The point of concurrence of all angle bisectors of a triangle is called the ______.

The circle which passes through all the vertices of a triangle is called ______.

Length of a chord of a circle is 24 cm. If distance of the chord from the centre is 5 cm, then the radius of that circle is ______.

The length of the longest chord of the circle with radius 2.9 cm is ______.

Radius of a circle with centre O is 4 cm. If l(OP) = 4.2 cm, say where point P will lie.

The lengths of parallel chords which are on opposite sides of the centre of a circle are 6 cm and 8 cm. If radius of the circle is 5 cm, then the distance between these chords is ______.

Find the length of the chord of a circle in the following when:

Radius is 13 cm and the distance from the centre is 12 cm

Find the length of the chord of a circle in the following when:

Radius is 1. 7cm and the distance from the centre is 1.5 cm

Find the length of the chord of a circle in the following when:

Radius is 6.5 cm and the distance from the centre is 2.5 cm

Find the area of a circle of radius 7 cm.

In the given figure, O is the centre of a circle, chord PQ ≅ chord RS If ∠ POR = 70° and (arc RS) = 80°, find –

(1) m(arc PR)

(2) m(arc QS)

(3) m(arc QSR)

In the given figure, chord EF || chord GH. Prove that, chord EG ≅ chord FH. Fill in the blanks and write the proof.

**The figure given below shows a circle with center O in which diameter AB bisects the chord CD at point E. If CE = ED = 8 cm and EB = 4 cm,**

find the radius of the circle.

**In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC at P and OA at Q.**

Prove that:

( i ) ΔOPA ≅ ΔOQC

( ii ) ΔBPC ≅ ΔBQA

**Draw two circles of different radii. How many points these circles can have in common? What is the maximum number of common points?**

**Suppose you are given a circle. Describe a method by which you can find the center of this circle.**

Find the area of the shaded region in the figure If ABCD is a rectangle with sides 8 cm and 6 cm and O is the centre of the circle. (Take π= 3.14)

In the above figure, seg AB is a diameter of a circle with centre P. C is any point on the circle. seg CE ⊥ seg AB. Prove that CE is the geometric mean of AE and EB. Write the proof with the help of the following steps:

a. Draw ray CE. It intersects the circle at D.

b. Show that CE = ED.

c. Write the result using the theorem of the intersection of chords inside a circle. d. Using CE = ED, complete the proof.

In an equilateral triangle, prove that the centroid and center of the circum-circle (circumcentre) coincide.

Two concentric circles with center O have A, B, C, D as the points of intersection with the lines L shown in the figure. If AD = 12 cm and BC s = 8 cm, find the lengths of AB, CD, AC and BD.

In the given figure, the area enclosed between the two concentric circles is 770 cm^{2}. If the radius of the outer circle is 21 cm, calculate the radius of the inner circle.

If O is the centre of the circle, find the value of x in each of the following figures

**Use the figure given below to fill in the blank:**

Diameter of a circle is ______.

**Use the figure given below to fill in the blank:**

Tangent to a circle is _______.

**Use the figure given below to fill in the blank:**

______ is a chord of the circle.

**Use the figure given below to fill in the blank:**

If the length of RS is 5 cm, the length of PQ = _______

Draw a circle of radius of 4.2 cm. Mark its center as O. Takes a point A on the circumference of the circle. Join AO and extend it till it meets point B on the circumference of the circle,

(i) Measure the length of AB.

(ii) Assign a special name to AB.

Draw circle with diameter: 6 cm

In above case, measure the length of the radius of the circle drawn.

Draw a circle of radius 3.6 cm. In the circle, draw a chord AB = 5 cm. Now shade the minor segment of the circle.

Can the length of a chord of a circle be greater than its diameter ? Explain.

Draw a circle of diameter 7 cm. Draw two radii of this circle such that the angle between these radii is 90°. Shade the minor sector obtained. Write a special name for this sector.

**State, if the following statement is true or false:**

The longest chord of a circle is its diameter.

If the radius of a circle is 5 cm, what will its diameter be?

**Draw circle with the radii given below.**

2 cm

**Draw circle with the radii given below.**

3 cm

**Draw a circle with the radii given below.**

4 cm

Draw a circle of any radius. Show one diameter, one radius, and one chord on that circle.

In the table below, write the names of the points in the interior and exterior of the circle and those on the circle.

Diagram |
Points in the interior of the circle |
Points in the exterior of the circle |
Points on the circle |

The diameter of the circle is 52 cm and the length of one of its chord is 20 cm. Find the distance of the chord from the centre

The chord of length 30 cm is drawn at the distance of 8 cm from the centre of the circle. Find the radius of the circle

Find the length of the chord AC where AB and CD are the two diameters perpendicular to each other of a circle with radius `4sqrt(2)` cm and also find ∠OAC and ∠OCA

A chord is 12 cm away from the centre of the circle of radius 15 cm. Find the length of the chord

In a circle, AB and CD are two parallel chords with centre O and radius 10 cm such that AB = 16 cm and CD = 12 cm determine the distance between the two chords?

Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord

A chord is at a distance of 15 cm from the centre of the circle of radius 25 cm. The length of the chord is

In the figure, O is the centre of a circle and diameter AB bisects the chord CD at a point E such that CE = ED = 8 cm and EB = 4 cm. The radius of the circle is

AD is a diameter of a circle and AB is a chord If AD = 30 cm and AB = 24 cm then the distance of AB from the centre of the circle is

The ratio between the circumference and diameter of any circle is _______

The longest chord of a circle is __________

The radius of a circle of diameter 24 cm is _______

A part of circumference of a circle is called as _______

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

15 cm |

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

1760 cm |

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

24 m |

All the radii of a circle are _______________

The ______________ is the longest chord of a circle

A line segment with its end points on the circle is called a ______________

Twice the radius is ________________

Find the diameter of the circle

Radius = 10 cm

Find the diameter of the circle

Radius = 8 cm

Find the diameter of the circle

Radius = 6 cm

Find the radius of the circle

Diameter = 24 cm

Find the radius of the circle

Diameter = 30 cm

Find the radius of the circle

Diameter = 76 cm

A, B, C are any points on the circle with centre O. If m(arc BC) = 110° and m(arc AB) = 125°, find measure arc AC.

If O is the center of the circle in the figure alongside, then complete the table from the given information.

The type of arc

Type of circular arc |
Name of circular arc |
Measure of circular arc |

Minor arc | ||

Major arc |

In figure, chords AC and DE intersect at B. If ∠ABE = 108°, m(arc AE) = 95°, find m(arc DC).

In the figure, segment PQ is the diameter of the circle with center O. The tangent to the tangent circle drawn from point C on it, intersects the tangents drawn from points P and Q at points A and B respectively, prove that ∠AOB = 90°

In the figure, O is the center of the circle. Line AQ is a tangent. If OP = 3, m(arc PM) = 120°, then find the length of AP.

In the figure, a circle with center P touches the semicircle at points Q and C having center O. If diameter AB = 10, AC = 6, then find the radius x of the smaller circle.

Circles with centres A, B and C touch each other externally. If AB = 36, BC = 32, CA = 30, then find the radii of each circle.

In the given figure, point P is 26 cm away from the centre O of a circle and the length PT of the tangent drawn from P to the circle is 24 cm. Then the radius of the circle is ______

In the figure, O is the centre of a circle, AB is a chord, and AT is the tangent at A. If ∠AOB = 100°, then ∠BAT is equal to ______

Two circles with centres O and O' of radii 3 cm and 4 cm, respectively intersect at two points P and Q such that OP and O'P are tangents to the two circles. Find the length of the common chord PQ.

In figure, if OA = 5 cm, AB = 8 cm and OD is perpendicular to AB, then CD is equal to ______.

In figure, BC is a diameter of the circle and ∠BAO = 60º. Then ∠ADC is equal to ______.

If AOB is a diameter of a circle and C is a point on the circle, then AC^{2} + BC^{2} = AB^{2}.

In the given figure, O is the centre of the circle. Name all chords of the circle.

In the given figure, O is the centre of the circle. Shade the smaller segment of the circle formed by CP.

From the figure, identify the centre of the circle.

From the figure, identify three radii.

From the figure, identify a diameter.

From the figure, identify a chord.

From the figure, identify a sector.

From the figure, identify a segment.

Draw any circle and mark

- it's centre
- a radius
- a diameter
- a sector
- a segment
- a point in its interior
- a point in its exterior
- an arc

Say true or false:

Two diameters of a circle will necessarily intersect.

A circle of radius 3 cm with centre O and a point L outside the circle is drawn, such that OL = 7 cm. From the point L, construct a pair of tangents to the circle. Justify LM and LN are the two tangents.

A 7 m broad pathway goes around a circular park with a circumference of 352 m. Find the area of road.

If radius of a circle is 5 cm, then find the length of longest chord of a circle.

AB is a chord of a circle with centre O. AOC is diameter of circle, AT is a tangent at A.

Write answers to the following questions:

- Draw the figure using the given information.
- Find the measures of ∠CAT and ∠ABC with reasons.
- Whether ∠CAT and ∠ABC are congruent? Justify your answer.