###### Advertisements

###### Advertisements

A line segment joining any point on the circle to its center is called the _____________ of the circle

###### Advertisements

#### Solution

A line segment joining any point on the circle to its center is called the **radius** of the circle

#### APPEARS IN

#### RELATED QUESTIONS

In the given figure, the incircle of ∆ABC touches the sides BC, CA and AB at D, E, F respectively. Prove that AF + BD + CE = AE + CD + BF = `\frac { 1 }{ 2 } ("perimeter of ∆ABC")`

Write True or False. Give reasons for your answers.

If a circle is divided into three equal arcs, each is a major arc.

Write True or False. Give reason for your answer.

Sector is the region between the chord and its corresponding arc.

In the fig. ABC is right triangle right angled at B such that BC = 6cm and AB = 8cm. Find the radius of its in circle.

From a point P, two tangents PA and PB are drawn to a circle with center O. If OP =

diameter of the circle shows that ΔAPB is equilateral.

O is the centre of a circle of radius 10 cm. P is any point in the circle such that OP = 6 cm. A is the point travelling along the circumference. x is the distance from A to P. what are the least and the greatest values of x in cm? what is the position of the points O, P and A at these values?

In the given figure, O is the centre of the circle. If ∠AOB = 140° and ∠OAC = 50°; Find:

(i) ∠ACB, (ii) ∠OBC, (iii) ∠OAB, (iv) ∠CBA.

In the following figure, AB is the diameter of a circle with centre O and CD is the chord with length equal to radius OA.

Is AC produced and BD produced meet at point P; show that ∠APB = 60°

In the given figure, a circle touches all the four sides of a quadrilateral ABCD whose three sides are AB = 6cm, BC=7cm and CD=4 cm. Find AD.

In the given figure common tangents AB and CD to the two circles with centres O_{1} and O_{2} intersect at E. Prove that AB=CD

In the given figure, a cradle inscribed in a triangle ABC touches the sides AB, BC and CA at points D, E and F respectively. If AB = 14cm, BC = 8cm and CA=12 cm. Find the length AD, BE and CF.

If the difference between the circumference and the radius of a circle is 37 cm, then using`22/7`, the circumference (in cm) of the circle is:

Tangents PA and PB are drawn from an external point P to two concentric circles with centre O and radii 8 cm and 5 cm respectively, as shown in Fig. 3. If AP = 15 cm, then find the length of BP.

In the given figure, *O* is the centre of the circle. If ∠*BOD* = 160°, find the values of* x* and *y*.

In the given figure, *ABCD* is a cyclic quadrilateral. If ∠*BCD* = 100° and ∠*ABD* = 70°, find ∠*ADB*.

A chord of length 14 cm is at a distance of 6 cm from the centre of a circle. The length of another chord at a distance of 2 cm from the centre of the circle is

One chord of a circle is known to be 10 cm. The radius of this circle must be

In the given figure, if chords *AB *and *CD* of the circle intersect each other at right angles, then *x* + *y* =

In the given figure, a ∆ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC are of lengths 8 cm and 6 cm respectively. Find the lengths of sides AB and AC, when area of ∆ABC is 84 cm^{2}.

Equal circles with centres O and O' touch each other at X. OO' produced to meet a circle with centre O', at A. AC is a tangent to the circle whose centre is O. O'D is perpendicular to AC. Find the value of\[\frac{DO'}{CO}\]

In Fig. 8.79, PQ is a tangent from an external point P to a circle with centre O and OP cuts the circle at T and QOR is a diameter. If ∠POR = 130° and S is a point on the circle, find ∠1 + ∠2.

In the given figure, PA and PB are tangents to the circle from an external point P. CD is another tangent touching the circle at Q. If PA = 12 cm, QC = QD = 3 cm, then find PC + PD.

Choose correct alternative answer and fill in the blank.

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is .........

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is ______.

The point of concurrence of all angle bisectors of a triangle is called the ______.

The circle which passes through all the vertices of a triangle is called ______.

Length of a chord of a circle is 24 cm. If distance of the chord from the centre is 5 cm, then the radius of that circle is ______.

The length of the longest chord of the circle with radius 2.9 cm is ______.

Radius of a circle with centre O is 4 cm. If l(OP) = 4.2 cm, say where point P will lie.

The lengths of parallel chords which are on opposite sides of the centre of a circle are 6 cm and 8 cm. If radius of the circle is 5 cm, then the distance between these chords is ______.

Find the length of the chord of a circle in the following when:

Radius is 13 cm and the distance from the centre is 12 cm

AB and CD are two equal chords of a drde intersecting at Pas shown in fig. P is joined to O , the centre of the cirde. Prove that OP bisects ∠ CPB.

In following fig. ABC is an equilateral triangle . A circle is drawn with centre A so that ot cuts AB and AC at M and N respectively. Prove that BN = CM.

Find the diameter of the circle if the length of a chord is 3.2 cm and itd distance from the centre is 1.2 cm.

Find the area of a circle of radius 7 cm.

In the above figure, `square`XLMT is a rectangle. LM = 21 cm, XL = 10.5 cm. Diameter of the smaller semicircle is half the diameter of the larger semicircle. Find the area of non-shaded region.

In the given figure, O is the centre of a circle, chord PQ ≅ chord RS If ∠ POR = 70° and (arc RS) = 80°, find –

(1) m(arc PR)

(2) m(arc QS)

(3) m(arc QSR)

In the given figure, chord EF || chord GH. Prove that, chord EG ≅ chord FH. Fill in the blanks and write the proof.

**The figure given below shows a circle with center O in which diameter AB bisects the chord CD at point E. If CE = ED = 8 cm and EB = 4 cm,**

find the radius of the circle.

**In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC at P and OA at Q.**

Prove that:

( i ) ΔOPA ≅ ΔOQC

( ii ) ΔBPC ≅ ΔBQA

**Draw two circles of different radii. How many points these circles can have in common? What is the maximum number of common points?**

**Suppose you are given a circle. Describe a method by which you can find the center of this circle.**

In the above figure, seg AB is a diameter of a circle with centre P. C is any point on the circle. seg CE ⊥ seg AB. Prove that CE is the geometric mean of AE and EB. Write the proof with the help of the following steps:

a. Draw ray CE. It intersects the circle at D.

b. Show that CE = ED.

c. Write the result using the theorem of the intersection of chords inside a circle. d. Using CE = ED, complete the proof.

In the given circle with diameter AB, find the value of x.

In the given figure, the area enclosed between the two concentric circles is 770 cm^{2}. If the radius of the outer circle is 21 cm, calculate the radius of the inner circle.

**Use the figure given below to fill in the blank:**

Tangent to a circle is _______.

Draw circle with diameter: 6 cm

In above case, measure the length of the radius of the circle drawn.

Draw a circle of radius 4.8 cm and mark its center as P.

(i) Draw radii PA and PB such that ∠APB = 45°.

(ii) Shade the major sector of the circle

Draw a circle of radius 3.6 cm. In the circle, draw a chord AB = 5 cm. Now shade the minor segment of the circle.

Construct a triangle ABC with AB = 5 cm, ∠B = 60° and BC = 6. 4 cm. Draw the incircle of the triangle ABC.

Construct a triangle PQR in which, PQ = QR = RP = 5.7 cm. Draw the incircle of the triangle and measure its radius.

The center of a circle is at point O and its radius is 8 cm. State the position of a point P (point P may lie inside the circle, on the circumference of the circle, or outside the circle), when:

(a) OP = 10.6 cm

(b) OP = 6.8 cm

(c) OP = 8 cm

**State, if the following statement is true or false:**

If the end points A and B of the line segment lie on the circumference of a circle, AB is a diameter.

**State, if the following statement is true or false:**

The longest chord of a circle is its diameter.

**State, if the following statement is true or false:**

Every diameter bisects a circle and each part of the circle so obtained is a semi-circle.

If the radius of a circle is 5 cm, what will its diameter be?

**Draw circle with the radii given below.**

2 cm

**Draw circle with the radii given below.**

3 cm

**Draw a circle with the radii given below.**

4 cm

Draw a circle of any radius. Show one diameter, one radius, and one chord on that circle.

In the table below, write the names of the points in the interior and exterior of the circle and those on the circle.

Diagram |
Points in the interior of the circle |
Points in the exterior of the circle |
Points on the circle |

The diameter of the circle is 52 cm and the length of one of its chord is 20 cm. Find the distance of the chord from the centre

The chord of length 30 cm is drawn at the distance of 8 cm from the centre of the circle. Find the radius of the circle

Find the length of the chord AC where AB and CD are the two diameters perpendicular to each other of a circle with radius `4sqrt(2)` cm and also find ∠OAC and ∠OCA

A chord is 12 cm away from the centre of the circle of radius 15 cm. Find the length of the chord

In a circle, AB and CD are two parallel chords with centre O and radius 10 cm such that AB = 16 cm and CD = 12 cm determine the distance between the two chords?

Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord

A chord is at a distance of 15 cm from the centre of the circle of radius 25 cm. The length of the chord is

In the figure, O is the centre of a circle and diameter AB bisects the chord CD at a point E such that CE = ED = 8 cm and EB = 4 cm. The radius of the circle is

AD is a diameter of a circle and AB is a chord If AD = 30 cm and AB = 24 cm then the distance of AB from the centre of the circle is

The ratio between the circumference and diameter of any circle is _______

A line segment which joins any two points on a circle is a ___________

The longest chord of a circle is __________

The radius of a circle of diameter 24 cm is _______

A part of circumference of a circle is called as _______

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

15 cm |

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

1760 cm |

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

24 m |

All the radii of a circle are _______________

The ______________ is the longest chord of a circle

A line segment with its end points on the circle is called a ______________

Twice the radius is ________________

Find the diameter of the circle

Radius = 10 cm

Find the diameter of the circle

Radius = 8 cm

Find the diameter of the circle

Radius = 6 cm

Find the radius of the circle

Diameter = 24 cm

Find the radius of the circle

Diameter = 30 cm

Find the radius of the circle

Diameter = 76 cm

Circles with centres A, B and C touch each other externally. If AB = 3 cm, BC = 3 cm, CA = 4 cm, then find the radii of each circle.

In figure, chords AC and DE intersect at B. If ∠ABE = 108°, m(arc AE) = 95°, find m(arc DC).

In figure, O is the centre of a circle, chord PQ ≅ chord RS. If ∠POR = 70° and (arc RS) = 80°, find

(i) m(arc PR)

(ii) m(arc QS)

(iii) m(arc QSR)

In the figure, segment PQ is the diameter of the circle with center O. The tangent to the tangent circle drawn from point C on it, intersects the tangents drawn from points P and Q at points A and B respectively, prove that ∠AOB = 90°

In the figure, O is the centre of the circle, and ∠AOB = 90°, ∠ABC = 30°. Then find ∠CAB.

In the figure, a circle with center P touches the semicircle at points Q and C having center O. If diameter AB = 10, AC = 6, then find the radius x of the smaller circle.

In the figure, a circle touches all the sides of quadrilateral ABCD from the inside. The center of the circle is O. If AD⊥ DC and BC = 38, QB = 27, DC = 25, then find the radius of the circle.

A line through the point of contact and passing through centre of the circle is known as ______

In the figure, O is the centre of a circle, AB is a chord, and AT is the tangent at A. If ∠AOB = 100°, then ∠BAT is equal to ______

In the adjoining figure, Δ ABC is circumscribing a circle. Then, the length of BC is ______

The length of the tangent from point A to a circle, of radius 3 cm, is 4 cm. The distance of A from the centre of the circle is ______

Two circles with centres O and O' of radii 3 cm and 4 cm, respectively intersect at two points P and Q such that OP and O'P are tangents to the two circles. Find the length of the common chord PQ.

The tangent at a point C of a circle and a diameter AB when extended intersect at P. If ∠PCA = 110°, find ∠CBA see figure

In figure, if AOB is a diameter of the circle and AC = BC, then ∠CAB is equal to ______.

A circle of radius 3 cm can be drawn through two points A, B such that AB = 6 cm.

Two chords AB and AC of a circle subtends angles equal to 90º and 150º, respectively at the centre. Find ∠BAC, if AB and AC lie on the opposite sides of the centre.

In the given figure, O is the centre of the circle. Name all chords of the circle.

In the given figure, O is the centre of the circle. Name a chord, which is not the diameter of the circle.

In the given figure, O is the centre of the circle. Shade the smaller segment of the circle formed by CP.

From the figure, identify the centre of the circle.

From the figure, identify a chord.

From the figure, identify two points in the interior.

From the figure, identify a point in the exterior.

From the figure, identify a segment.

Draw any circle and mark

- it's centre
- a radius
- a diameter
- a sector
- a segment
- a point in its interior
- a point in its exterior
- an arc

Say true or false:

Two diameters of a circle will necessarily intersect.

A circle of radius 3 cm with centre O and a point L outside the circle is drawn, such that OL = 7 cm. From the point L, construct a pair of tangents to the circle. Justify LM and LN are the two tangents.

A 7 m broad pathway goes around a circular park with a circumference of 352 m. Find the area of road.

If radius of a circle is 5 cm, then find the length of longest chord of a circle.

AB is a chord of a circle with centre O. AOC is diameter of circle, AT is a tangent at A.

Write answers to the following questions:

- Draw the figure using the given information.
- Find the measures of ∠CAT and ∠ABC with reasons.
- Whether ∠CAT and ∠ABC are congruent? Justify your answer.

The circumcentre of a triangle is the point which is ______.