Advertisement Remove all ads

# A Cos a + B Cos B + C Cos C = 2b Sin a Sin C - Mathematics

a cos + b cos B + c cos C = 2sin sin

Advertisement Remove all ads

#### Solution

$\text{ By sine rule, we know that }$

$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \left( say \right)$

$\Rightarrow a = k \sin A, b = k \sin B, c = k \sin C$

$\text{ Now },$

$LHS = a \cos A + b \cos B + c \cos C$

$= k \sin A \cos A + k \sin B \cos B + k \sin C \cos C$

$= \frac{k}{2} \left( 2 \sin A \cos A + 2 \sin B \cos B + 2 \sin C \cos C \right)$

$= \frac{k}{2} \left( \sin 2A + \sin 2B + 2 \sin C \cos C \right)$

$= \frac{k}{2} \left( 2 \sin \frac{2A + 2B}{2}\cos\frac{2A - 2B}{2} + 2 \sin C \cos C \right)$

$= \frac{k}{2} \left( 2 \sin \left( A + B \right) \cos \left( A - B \right) + 2 \sin C \cos C \right)$

$= \frac{k}{2} \left( 2 \sin \left( \pi - C \right) \cos \left( A - B \right) + 2 \sin C \cos C \right) \left( \because A + B + C = \pi \right)$

$= \frac{k}{2} \left( 2 \sin C \cos \left( A - B \right) + 2 \sin C \cos C \right)$

$= \frac{k}{2} \times 2 \sin C\left( \cos \left( A - B \right) + \cos C \right)$

$= k \sin C\left( 2 \cos \left( \frac{A - B + C}{2} \right)\cos \left( \frac{A - B - C}{2} \right) \right)$

$= k \sin C\left( 2 \cos \left( \frac{\pi - B - B}{2} \right)\cos \left( \frac{B + C - A}{2} \right) \right) \left( \because A + B + C = \pi \right)$

$= k \sin C\left( 2 \cos \left( \frac{\pi - 2B}{2} \right)\cos \left( \frac{\pi - 2A}{2} \right) \right) \left( \because A + B + C = \pi \right)$

$= k \sin C\left( 2 \cos \left( \frac{\pi}{2} - B \right)\cos \left( \frac{\pi}{2} - A \right) \right)$

$= 2k \sin C\left( \sin B \sin A \right)$

$= 2 \left( k \sin B \right) \sin A \sin C$

$= 2b \sin A \sin C$

$= RHS$

$\therefore LHS = RHS$

Hence, a cos + b cos B + c cos C = 2sin sin C.

Concept: Sine and Cosine Formulae and Their Applications
Is there an error in this question or solution?
Advertisement Remove all ads

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 10 Sine and cosine formulae and their applications
Exercise 10.2 | Q 11 | Page 25
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications

Forgot password?