Tamil Nadu Board of Secondary EducationSSLC (English Medium) Class 10th

# A coin is tossed thrice. Find the probability of getting exactly two heads or atleast one tail or two consecutive heads - Mathematics

Sum

A coin is tossed thrice. Find the probability of getting exactly two heads or atleast one tail or two consecutive heads

#### Solution

Sample space = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

n(S) = 8

Let A be the event of getting exactly two heads.

A = {HHT, HTH, THH}

n(A) = 3

P(A) = ("n"("A"))/("n"("S")) = 3/8

Let B be the event of getting atleast one tail

B = {HHT, HTH, HTT, THH, THT, TTH, TTT}

n(B) = 7

P(B) = ("n"("B"))/("n"("S")) = 7/8

Let C be the event of getting consecutively

C = {HHH, HHT, THH}

n(C) = 3

P(C) = ("n"("C"))/("n"("S")) = 3/8

A ∩ B = {HHT, HTH, THH}

n(A ∩ B) = 3

p(A ∩ B) = ("n"("A" ∩ "B"))/("n"("S")) = 3/8

B ∩ C = {HHT, THH}

n(B ∩ C) = 2

P(B ∩ C) = ("n"("B" ∩ "C"))/("n"("S")) = 2/8

A ∩ C = {HHT, THH}

n(A ∩ C) = 2

P(A ∩ C) = ("n"("A" ∩ "C"))/("n"("S")) = 2/8

(A ∩ B ∩ C) = {HHT, THH}

n(A ∩ B ∩ C) = 2

P(A ∩ B ∩ C) = ("n"("A" ∩ "B" ∩ "C"))/("n"("S")) = 2/8

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(B ∩ C) − P(A ∩ C) + P(A ∩ B ∩ C)

= 3/8 + 7/8 + 3/8 - 3/8 - 2/8 - 2/8 + 2/8

= 3/8 + 7/8 - 2/8

= (10 - 2)/8

= 8/8

= 1

The probability is 1.

Concept: Addition Theorem of Probability
Is there an error in this question or solution?

#### APPEARS IN

Tamil Nadu Board Samacheer Kalvi Class 10th SSLC Mathematics Answers Guide
Chapter 8 Statistics and Probability
Exercise 8.4 | Q 12 | Page 330