A and B are two events such that P(A) = 0.54, P(B) = 0.69 and P(A ∩ B) = 0.35.
Find
(i) P(A ∩ B)
(ii) P(A′ ∩ B′)
(iii) P(A ∩ B′) (iv) P(B ∩ A′)
Advertisement Remove all ads
Solution
It is given that P(A) = 0.54, P(B) = 0.69, P(A ∩ B) = 0.35
(i) We know that P (A ∪ B) = P(A) + P(B) − P(A ∩ B)
∴P (A ∪ B) = 0.54 + 0.69 − 0.35 = 0.88
(ii) A′ ∩ B′ = (A ∪ B)′ [by De Morgan’s law]
∴P(A′ ∩ B′) = P(A ∪ B)′ = 1 − P(A ∪ B) = 1 − 0.88 = 0.12
(iii) P(A ∩ B′) = P(A) − P(A ∩ B)
= 0.54 − 0.35
= 0.19
Concept: Event - Algebra of Events
Is there an error in this question or solution?
APPEARS IN
Advertisement Remove all ads