Advertisement Remove all ads

A 660 Hz tuning fork sets up vibration in a string clamped at both ends. The wave speed for a transverse wave on this string is 220 m s−1 and the string vibrates in three - Physics

Sum

A 660 Hz tuning fork sets up vibration in a string clamped at both ends. The wave speed for a transverse wave on this string is 220 m s−1 and the string vibrates in three loops. (a) Find the length of the string. (b) If the maximum amplitude of a particle is 0⋅5 cm, write a suitable equation describing the motion.

Advertisement Remove all ads

Solution

Given:
Frequency (f) = 660 Hz
Wave speed (v) = 220 m/s

\[\text{ Wave length,} \lambda = \frac{v}{f} = \frac{220}{660} = \frac{1}{3}  m\] 

(a) No. of loops, n = 3 
∴  \[L = \frac{n}{2}\lambda\]

\[\Rightarrow L = \frac{3}{2} \times \frac{1}{3}\] 

\[ \Rightarrow L = \frac{1}{2}  m = 50  \text{ cm }\]
(b) Equation of resultant stationary wave can be given by:

\[y = 2A\cos\left( \frac{2\pi x}{\lambda} \right)\sin\left( \frac{2\pi vL}{\lambda} \right)\] 

\[ \Rightarrow y = 0 . 5  \cos\left( \frac{2\pi x}{\frac{1}{3}} \right)\sin\left( \frac{2\pi \times 220 \times t}{\frac{1}{3}} \right)\] 

\[ \Rightarrow y = 0 . 5  cm  \cos\left( 6\pi x  m^{- 1} \right)  \sin\left( 1320\pi t  s^{- 1} \right)\] 

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

HC Verma Class 11, 12 Concepts of Physics 1
Chapter 15 Wave Motion and Waves on a String
Q 43 | Page 326
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×