Advertisement Remove all ads

Π / 4 ∫ 0 Cos 4 X Sin 3 X D X - Mathematics

Sum

\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]

Advertisement Remove all ads

Solution

\[\int_0^\frac{\pi}{4} \cos^4 x \sin^3 x d x\]

\[ = \int_0^\frac{\pi}{4} \cos^4 x \sin x \left( 1 - \cos^2 x \right) dx\]

\[ = \int_0^\frac{\pi}{4} \cos^4 x \sin x dx - \int_0^\frac{\pi}{4} \cos^6 x \sin x dx\]

\[ = - \left[ \frac{\cos^5 x}{5} \right]_0^\frac{\pi}{4} + \left[ \frac{\cos^7 x}{7} \right]_0^\frac{\pi}{4} \]

\[ = \frac{- 1}{20\sqrt{2}} + \frac{1}{5} + \frac{1}{56\sqrt{2}} - \frac{1}{7}\]

\[ = \frac{- \sqrt{2}}{40} + \frac{2}{35} + \frac{\sqrt{2}}{112}\]

\[ = \frac{2}{35} - \frac{9\sqrt{2}}{560}\]

Concept: Definite Integrals Problems
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 12 Maths
Chapter 20 Definite Integrals
Revision Exercise | Q 19 | Page 121
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×